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preface

This book is intended as a general introduction to modern physics for science and
engineering students. It is written at a level which presurnes a prior full year’s
course in classical physics, and a knowledge of elementary differential and
integral calculus.

The material discussed here includes probability, relativity, quantum me-
chanics, atomic physics, statistical mechanics, nuclear physics and elementary
particles. Some of these topi(:s, such as statistical mechanics and probability, are
ordinarily not included in textbooks at this level. However, we have felt that for
proper understanding of many topics in modern physics--such as qudmum me-
chanics and its applications--this material is essential. It is our opim'on that
present-day science and engineering students should be able to work quanti-
tatively with the concepts of modern physics. Therefore, we have attempted to
present these ideas in a manner which is logical and fairly rigorous. A number of
topics, especially in quantum mechanics, are presented in greater depth than is
customary. In many cases, unique ways of presentation are given which greatly
simplify the discussion of there topics. However, few of the developments require
more mathematics than elementary calculus and the algebra of complex num-
bers; in a few places, familiarity with partial differentiation will be necessary.

Unifying concepts which halve important applications throughout modern
physics, such as relativity, probability and the laws of conservation, have been
stressed. Almost all theoretical developments are linked to examples and data
taken from experiment. Summaries are included at the end of each chapter, as
well as problems with wide variations in difficulty.

This book was written for use in a one-semester course at the Sophomore or
iunior level. The course could be shortened by omitting some topics; for example,
Chapter 7, Chapter 12, Chapters 13 through 15, and Chapter 16 contain blocks
of material which are somewhat independent of each other.

The system of units primarily used throughout is the meter-kilogram-second
system. A table of factors for conversion to other useful units is given in Appen-
dix 4. Atomic mass units are defined with the C]2 atom as the standard.

We are grateful for the helpful comments of a large number of students, who
used the book in preliminary form for a number of years. We also thank our
colleagues and reviewers for their constructive criticism. Finally, we wish to ex-

press our thanks to Mrs. Ruth Wilson for her careful typing of the manuscript.
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| Introduction

.1 HISTORICAL SURVEY

The term modern physics generally refers to the study of those facts and theories
developed in this century, that concern the ultimate structure and interactions of
matter, space and time. The three main branches of classical physics-mechanics,
heat and electromagnetism---were developed over a period of approximately
two centuries prior to 1900. Newton’s mechanics dealt successfully with the
motions of bodies of macroscopic size moving with low speeds, and provided a
foundation for many of the engineering accomplishments of the eighteenth and
nineteenth centuries. With Maxwell’s discovery of the displacement current and
the completed set of electromagnetic field equations, classical technology re-
ceived new impetus: the telephone, the wireless, electric light and power, and a
host of other applications followed.

Yet the theories of mechanics and electromagnetism were not quite consistent
with each other. According to the Galilean principle of relativity, recognized by
Newton, the laws of mecharics should be expressed in the same mathematical
form by observers in different inertial frames of reference, which are moving with
constant velocity relative to each other. The transformation equations, relating
measurements in two relatively moving inertial frames, were not consistent with
the transformations obtained by Lorentz from similar considerations of form-
invariance applied to Maxwell’s equations. Furthermore, by around 1900 a
number of phenomena had been discovered which were inexplicable on the basis
of classical theories.

The first ma]or step toward a deeper understanding of the nature of space
and time measurements was due to Albert Einstein, whose special theory of rela-
tivity (1905) resolved the inconsistency between mechanics and electromagnetism
by showing, among other things, that Newtonian mechanics is only a first ap-
proximation to a more general set of mechanical laws; the approximation is,
however, extremely good when the bodies move with speeds which are small
compared to the speed of light. Among the important results obtained by
Einstein was the equivalence of mass and energy, expressed in the famous
equation E-= mcz.

From a logical standpoint, special relativity lies at the heart of modern
physics. The hypothesis that electromagnetic radiation energy is quantized in

bunches of amount hl/, where  is the frequency and h is a constant, enabled
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Planck to explain the intensity distribution of black-body radiation. This occurred
several years before Einstein published his special theory of relativity in 1905.
At about this time, Einstein also applied the quantum hypothesis to photons in an
explanation of the photoelectric effect. This hypothesis was found to be con-
sistent with special relativity. Similarly, Bohr’s postulate-that the electron’s
angular momentum in the hydrogen atom is quantized in discrete amounts—
enabled him to explain the positions of the spectral lines in hydrogen. These first
guesses at a quantum theory were followed in the first quarter of the century by
a number of refinements and ad hoc quantization rules; these, however, achieved
only limited success. It was not until after 1924, when Louis de Broglie proposed,
on the basis of relativity theory, that waves were associated with material par-
ticles, that the foundations of a correct quantum theory were laid. Following
de Broglie’s suggestion, Schrb'dinger in 1926 proposed a wave equation describ-
ing the propagation of these particle-waves, and developed a quantitative
explanation of atomic spectral line intensities. In a few years thereafter, the
success of the new wave mechanics revolutionized physics.

Following the discovery of electron spin, Pavli’s exclusion principle was rigor-
ously established, providing the explanation for the structure of the periodic
table of the elements and for many of the details of the chemical properties of
the elements. Statistical properties of the systems of many particles were studied
from the point of view of quantum theory, enabling Sommerfeld to explain the
behavior of electrons in a metal. Bloch’s treatment of electron waves in crystals
simplified the application of quantum theory to problems of electrons in solids.
Dirac, while investigating the possible first order wave equations allowed by
relativity theory, discovered that a positively charged electron should exist; this
particle, called a positron, was later discovered. These are only a few of the
many discoveries which were made in the decade from 1925-] 935.

From one point of view, modern physics has steadily progressed toward the
study of smaller and smaller features of the microscopic structure of matter, using
the conceptual tools of relativity and quantum theory. Basic understanding of
atomic properties was in principle achieved by means of Schrodinger’s equation
in 1926. (In practice,. working out the implications of the Schradinger wave
mechanics for atoms and molecules is diFﬂcuh, due to the large number of
variables which appear in the equation for systems of more than two or three
particles.) Starting In 1932 with the discovery of the neutron by Chadwick,
properties of atomic nuclei have become known and understood in greater and
greater detail. Nuclear fission and nuclear fusion are byproducts of these studies,
which are still extrernely active. At the present time some details of the inner
structure of protons, neutrons and other particles involved in nuclear inter-
actions are just beginning to be unveiled.

Over fifty of the so-called elementary particles have been discovered. These
particles are ordinarily created by collisions between high-energy particles of
some other type, usually nuclei or electrons. Most of the elementary particles are

unstable and decay into other more stable objects in a very short time. The study
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7.2 Notation and units

of these particles and their interactions forms an important branch of present-day
research in physics.

It should be emphasized that one of the most important unifying concepts in
modern physics is that of energy. Energy as a conserved quantity was well-known
in classical physics. From the time of Newton until Einstein, there were no funda-
mentally new mechanical laws introduced; however, the famous variational
principles of Hamilton and Lagrange expressed Newtonian lows in a different
form, by working with mathematical expressions for the kinetic and potential
energy of a system. Einstein showed that energy and momentum are closely re-
lated in relativistic transformation equations, and established the equivalence of
energy and mass. De Broglie’s quantum relations connected the frequency and
wavelength of the wave motions associated with particles, with the particle’s
energy and momentum. S\:hr'ddinger's wave equation is obtained by certain
mathematical operations performed on the expression for the energy of a system.
The most sophisticated expressions of modern-day relativistic quantum theory are
variational principles, which involve the energy of a system expressed in
quantum-mechanical form. And, perhaps most important, the stable stationary
states of quantum systems are states of definite energy.

Another very important concept used throughout modern physics is that of
probability. Newtonian mechanics is a strictly deterministic theory; with the
development of quantum theory, however, it eventually became clear that
microscopic events could not be precisely predicted or controlled. Instead, they
had to be described in terms of probabilities. It is somewhat ironic that proba-
bility was first introduced into quantum theory by Einstein in connection with his
discovery of stimulated emission. Heisenberg’s uncertainty principle, and the
probability interpretation of the Schrb’dinger wavefunction, were sources of
distress to Einstein who, not feeling comfortable with a probabilistic theory, later
declared that he would never believe that “God plays dice with the world.”

As a matter of convenience, we shall begin in Chapter 2 with a brief intro-
duction to the concept of probability and to the rules for combining proba-
bilities. This material will be used extensively in later chapters on the quantum
theory ond on statistical mechanics.

The remainder of the present chapter consists of review and reference material

on units and notation, placed here to avoid the necessity of later digressions.

NOTATION AND UNITS

The well-known meter-kiloglram-second (MKS) system of units will be used in
this book. Vectors wil be denoted by boldface type, such as F for force. In these
units, the force on a point charge of Q coulombs, moving with velocity v in meters
per second, at a point where the electric field is E volts per meter and the mag-
netic field is B webers per square meter, is the Lorentz force:

F=QE + v xB) (1.



Introduction

where v x B denotes the vector cross-product of v and B. The potential in volts
produced by a point charge Q at a distance r from the position of the charge is

given by Coulomb’s law:

Q
V(r) = —— (1.2)
4menr
where the constant €5 is given by
! 9 2 2
9 x 107 newtons-m*/coulomb (1.3)

(4reg)

These particular expressions from electromagnetic theory are mentioned here
because they wil be used in subsequent chapters.

In conformity with modern notation, a temperature such as “300 degrees
Kelvin” will be denoted by 300K. Boltzmann’s constant will be denoted by
kg , with

I(,g = 1.38 x 107® joules/molecule-K (],4)

A table of the fundqmemq| constants is given in Appendix 4.

UNITS OF ENERGY AND MOMENTUM

While in the MKS system of units the basic energy unit is the joule, in atomic and
nuclear physics several other units of energy have found widespread use. Most of
the energies occurring in atomic physics are given conveniently in terms of the
electron volt, abbreviated eV. The electron volt is defined as the amount of work
done upon an electron as it moves through a potential difference of one volt.

Thus

1 eV =e x V = e(coulombs) x 1 volt

= 1.602 x 107" joules (1.5)

The electron volt is an amount of energy in joules equal to the numerical value
of the electron’s charge in coulombs. To convert energies from joules to eV’ or
from eV to joules, one divides or multiplies by e, respectively. For example, for a
particle with the mass of the electron, moving with a speed of 1% of the speed of
light, the kinetic energy would be

R~ ]5 (9.11 x  107%kg)(3x  10° m/sec)?

4.1 x 1 07'%joules
4.1 x 1078
(1.6 x 1077 j/eV)
=26 eV (1.6)

In nuclear physics most energies are of the order of several million electron

volts, leading to the definition of a unit called the MeV:
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1 MeV =1 million eV = 10%V
= 1.6 x 107 joules = (1 0%)joules (1.7)

For example, a proton of rnass 1.667 x ]0_27 kg, traveling with 10% of the

speed of light, would have a kinetic energy of approximately

1oyt o 10187 10?7 kg)(3 x 107 m/sec)?
Doyt = !
2 2 (1.6 x 107" j/MeV)

= 4.7 MeV (1.8)

Since energy has units of mass x (speed)z, while momentum has units of
mass x speed, for mony applications in nuclear and elementary particle physics

a unit of momentum called MeV/c is defined in such o way that

1MeV  10% e
C

C

kg-m/sec

= 5.351 x 107" kg-m/sec (1.9

where ¢ and e are the numerical values of the speed of light and electronic
charge, respectively, in MKS units. This unit of momentum is particularly con-
venient when working with relativistic relations between energy and momentum,
such as F = pc, for photons. Then if the momentum p in MeV/c is known, the

energy in MeV is numericaly equal to p. Thus, in general, for photons

E(in MeV) = p(in MeV/c) (1.10)

Suppose, for instance, that a photon hos a momentum of ]0—71 kg-m/sec_ The
energy would be pc =3 x 107" joules = 1.9 MeV, after using Equation (1.7).
On the other hand, if p is expressed in MeV/c, using Equation (1.9) we find that

p=10"%kg-m/sec = 1.9 MeV/c

The photon energy is then E= pc = (1.9 MeV/c)(¢c) = 1.9 MeV.

ATOMIC MASS UNIT

The atomic mass unit, abbreviated amu, is chosen in such a way that the mass
of the most common atom of carbon, containing six protons and six neutrons in a
nucleus surrounded by six electrons, is exactly 12.000000000 . . @amu. This unit is
convenient when discussing atomic masses, which are then always very close to
an integer. An older atomic mass unit, based on on atomic mass of exactly
16 units for the oxygen atom with 8 protons, 8 neutrons, and 8 electrons, is no
longer in use in physics resegrch, In addition, a slightly different choice of atomic
mass unit is commonly use¢ in chemistry. All atomic masses appearing in this
book are based on the physical scale, using carbon as the standard.

The conversion from @gmu on the physical scale to kilograms may be obtained

by using the fact that one gram-molecular weight of a substance contains
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Avogadro’s number, Ny = 6.022 x 102 of molecules. Thus, exactly 12.000

’

grams of C]2 atoms contains N, atoms, and

12
1 amy = L 9} x 107 kg/g
V]
= 1.660 x 1077 kg (1.11)

PROPAGATION OF WAVES; PHASE AND GROUP SPEEDS

In later chapters, many different types of wave propagation will be considered:
the de Broglie probability waves of quantum theory, lattice vibrations in solids,
light waves, and so on. These wave motions can be described by a displacement,

or amplitude of vibration of some physical quantity, of the form
Y(x. 1) = A cos (kx + wt+ ¢) (1.12)

where A and ¢ are constants, and where the wavelength and frequency of the

wave are given by
A= 2 22 (1.13)

Here the angular frequency is denoted by () = o(k), to indicate that the fre-
quency is determined by the wavelength, or wavenumber k. This frequency-
wavelength relation, & = w(k), is called a dispersion relation and arises because
of the basic physical laws satisfied by the particular wave phenomenon under
investigation. For example, for sound waves in air, Newton’s second law of

motion and the adiabatic gas law imply that the dispersion relation is
w = vk (1.14)

where v is a constant.
If the negative sign is chosen in Equation (1.12), the resulting displacement

(omitting the phase constant (f)) is
Y(x, 1) = A cos (kx = wt) = A cos k<x <%>f (1.15)

This represents a wave propagating in the positive x direction. Individual crests
and troughs in the waves propagate with a speed called the phase speed,

given by

w = (1.16)

w
k

In nearly all cases, the wave phenomena which we shall discuss obey the
principle of superposition-namely, that if waves from two or more sources
arrive at the same physical point, then the net displacement is simply the sum of
the displacements from the individual waves. Consider two or more wave trains

propagating in the same direction. If the angular frequency w is a function of
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the wavelength or wavenumber, then the phase speed can be a function of the
wavelength, and waves of differing wavelengths travel at different speeds.
Reinforcement or destructive interference can then OCCUI as one wave gains on
another of different wavelength. The speed with which the regions of constructive
or destructive interference advance is known as the group speed.

To calculate this speed, consider two trains of waves of the form of Equation
(].]5), of the same amplitude but of slightly different wavelength and frequency,
such as

o= A cos [(k + 2 AKX (w + % Aw)t]
Y = Acos [(k = %2 AKX — (w - %2 Aw)t] (1.17)

Here, k and w are the central wavenumber and angular frequency, and Ak,
Aw are the differences between the wavenumbers and angular frequencies of
the two waves. The resultant displacement, using the identity 2 cos A cos B =
€OS (A + 13) + cos (A = B), is

Vo=t + Y, = (2 A cos V2 (AKX — Awi]»l €0s (kx = wt) (1.18)

This expression represents 1 wave traveling with phase speed w/k, and with an

amplitude given by

2 Acos V2 (Akx — Awt) =2 Acos ¥ Ak(x - —‘2% f> (1.19)

The amplitude is a cosine curve; the spatial distance between two successive zeros
of this curve a a given instant is w/Ak, and is the distance between two suc-
cessive regions of destructive interference. These regions propagate with the

group speed Yy o given by

v, = Aw gw (k) (1.20)
¢ A Kk ak—o dk ’
in the limit of sufficiently small Ak.
Thus, for sound waves in air, since (@ = vk, we derive
d(vk)
v, = =y = w (1.21)
’ dk

and the phase and group speeds are equal. On the other hand, for surface

gravity waves in a deep seo, the dispersion relation is
w = {gk + k*T/p}'"? (1.22)

where g is the gravitational acceleration, J is the surface tension and p is the

density. Then the phase speed is

@ g Tk|'"
w:?z E+; (1.23)
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whereas the group speed is

_dw

v - g + 3k*T/p
9
dk

1
2 \(gk + K°T/0)" (129

If the phase speed is a decreasing function of k, or an increasing function of
wavelength, then the phase speed is greater than the group speed, and individ-
ual crests within a region of constructive interference-i.e. within a group of
waves-travel from recar to front, crests disappearing at the front and reappear-
ing at the rear of the group. This can easily be observed for waves on a pool

of water.

1.6 COMPLEX NUMBER!;

Because the use of complex numbers is essential in the discussion of the wavelike
character of particles, a brief review of the elementary properties of complex
numbers is given here. A complex number is of the form ¢ = a + ib, where
o and b are real numbers and | is the imaginary unit, i2 = = 1. The real part
of yb is a, and the imaginary part is b:

Re(a + ib) = a

Im{a + ib) = b (1.25)

A complex number \// = a + ib can be represented as a vector in two dimensions,

with the x component of the vector identified with Re(l//), and the y component

Figure 1 .1. Two-dimensional vector representation of @ complex number ¢/ = a + ib.

of the vector identified with Im (g&), as in Figure 1 .1 . The square of the magnitude
of the vector is

¢ |2 =g’ + b2 (1.26)

The complex conjugate of II/ = a + ib is denoted by the symbol d/* and is ob-
tained by replacing the imaginary unit ] by —i:

Y* = a - ib (1.27)
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We can calculate the magnitude of the square of the vector by multiplying 1,[/ by
its complex conjugate:

[y 1?2 = y*y = a®  (ib)? = a? *+ b2 (1.28)

The complex exponential function, e‘a, or exp (iﬁ),where f is a real function

or number, is of pqrticula‘- importance; this function may be defined by the

power series

i +
= 10 —_—
@) 2! 3!
S (i)
=2, ; (1.29)
=0 N
Then, replacing i2 everywhere that it appears by -- 1 and collecting real and
imaginary terms, we find that
2 4 3 5
" 0 6 . 0 6
e’ =l = — e - e
2! 4! 3! 51 *
= cos f + {sin @ (1.30)
Since {em}"= ei"B, we have de Moivre’s theorem:
e — cos nf + | sn nf = (cos # + | sin f]}” (1.31)
Since (eia)* = e—iﬂ’ we also 1ave the following identities:
it _ 0 1 0, i
Re e"” = cos 0 = 2 (e e ) (1.32)
[ H 0 = 1 i9 —if
me” =sinfl = — (" — ™) (1.33)
2i1
e’ |? = e e = e =1 (1.34)
1 1 a -~ ib a -- ib
- - - = - X = (1.35)
(a +ib) a + ib a—-ib g% + p?
The integral of an exponential function of the form e |js
(4.4
(2.4 e
[e = — + constant (1.36)
c
L4
and this is also valid when c is complex. For example,
T ieﬂ," It 0
. PRL
f edf = = = £
() I 0 i
(cos T +isnm =1
! (1.37)

(=1 +0-1
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The complex exponential function is a periodic function with period 27. Thus

e 2% = cos (B + 27r) + isin (8 + 27)
= cos B + isinf
if (1.38)

More generally, if n is any positive integer or negative integer,

oi@+2rm) b (1.39)

or exp (2nwi) = 1. Conversely, if exp (ifl) = 1, the only possible solutions for
f are

6 =27n, n =0,+1,+2, £3,... (1.40)



2 probability

We have ninety chances in @ hundred.

Napoleon at Waterloo, 1815

The commonplace meaning of the word “chance s probably already familiar
to the reader. In everyday life, most situations in which we act are characterized
by uncertain knowledge of the facts and of the outcomes of our actions. We are
thus forced to make guesses, and to take chances. In the theory of probability,
the concepts of probability and chance are given precise meanings. The theory
not only provides a systematic way of improving our guesses, it is also an
indispensable tool in studying the abstract concepts of modern physics. To avoid
the necessity of digressions on probability during the later development of
statistical mechanics and quantum mechanics, we present here a brief intro-
duction to the basic elements of probability theory.

When Napoleon uttered the statement above, he did not mean that if the
Battle of Waterloo were fought a hundred times, he would win it ninety times.
He was expressing an intuitive feeling about the outcome, which was based on
years of experience and on the facts as he knew them. Had he known enemy
reinforcements would arrive, and French would not, he would have revised the
estimate of his chances downward. Probability is thus seen to be a relative thing,
depending on the state of knowledge of the observer. As another example, a
student might decide to study only certain sections of the text for an exam,
whereas if he knew what the professor knew-namely, which questions were to
be on the exam-he could probably improve his chances of passing by studying
some other sections.

In physics, quantitative application of the concept of chance is of great
importance. There are several reasons for this. For example, it is frequently
necessary to describe qucmiitaﬁvely systems with a great many degrees of
freedom, such as a jar containing 1023 molecules; however, it is, as a practical
matter, impossible to know exactly the positions or velocities of all molecules in
the jar, and so it is impossible to predict exactly what wil happen to each mole-
cule. This is simply because the number of molecules is so great. It is then neces-
sary to develop some approximate, statistical way to describe the behavior of the
molecules, using only a few variables. Such studies form the subject matter of a
branch of physics called statistical mechanics.

Secondly, since 1926 the development of quantum mechanics has indicated
that the description of mechanical properties of elementary particles can only

be given in terms of probobilities. These results from quantum mechanics have

11
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profoundly affected the physicist’s picture of nature, which is now conceived and
interpreted using probabilities.

Thirdly, experimental measurements are always subject to errors of one sort
or another, so the quantitative measurements we make always have some un-
certainties associated with them. Thus, a person’s weight might be measured as
176.7 |b, but most scales are not accurate enough to tell whether the weight
is 176.72 lbw or 176.68 |b, or something in between. All measuring instruments
have similar limitations. Further, repeated measurements of a quantity will
frequently give different values for the quantity. Such uncertainties can usually
be best described in terms of probabilties.

DEFINITION OF PROBABILITY

To make precise quomri}fotive statements about nature, we must define the con-
cept of probability in a quantitative way. Consider an experiment having d
number of different possible outcomes or results. Here, the probability of a par-
ticular result is simply the expected fraction of occurrences of that result out of a
very large number of repetitions or trials of the experiment. Thus, one could ex-
perimentally determine the probability by making a large number of trials and
finding the fraction of occurrences of the desired result. It may, however, be
impractical to actually repeat the experiment many times (consider for example
the impossibility of fighting the Battle of Waterloo more than once). We then
use the theory of probability; that is a mathematical approach based on a simple
set of assumptions, or postulates, by means of which, given a limited amount of
information about the situation, the probabilities of various outcomes may be
computed. It is hoped that the assumptions hold to a good approximation in the
actual physical situation.

The theory of probability was originally developed to aid gamblers interested
in improving their income, and the assumptions of probability theory may be
naturally illustrated with simple games. Consider flipping a silver dollar ten
times. If the silver dollar is not loaded, on the average it will come down heads
five times out of ten. ‘The fraction of occurrences of heads on the average is
%0 0r Y2 Then we say that probability P(heads) of flipping a head in one try is
P(heads) = %2 . similarly, the probability of flipping a tail in one try is
P(tails) = Y.

In this example, it is assumed that the coin is not loaded. This is equivalent to
saying that the two sides of the coin are essentially identical, with a plane of
symmetry; it 1s then reasonable to assume that since neither side of the coin is
favored over the other, on the average one side wil turn up as often as the other.
This illustrates an important assumption of probability theory: When there are
several possible alternatives and there is no apparent reason why they should
occur with different frequencies, they are assigned equal probabilities. This is

sometimes called the postulate of equal a priori probabilities.
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2.2 SUMS OF PROBABILITIES

Some general rules for cornbining probabilities are also illustrated by the coin-
flipping experiment. In every trial, it is certain that either heads or tails will turn
up. The fraction of occurrences of the result “either heads‘ or tails” must be unity,

and so
P(either heads or tails) = | (2.1)

In other words, the probability of an event which is certain is taken to be 1.
Further, the fraction of heads added to the fraction of tails must equal the

fraction of *“either heads or tails,” and so
P(either heads or tails) = P(heads) + P{tails) (2.2)

In the special case of the fair coin, both P(heads) and P(tails) are %2, and the

above equation reduces to 1 = %2 + ¥2.
More generally, if A, B, C,.. .are events that occur with probabilities
P(A), P(B), P(C), . . . , then the probability of either A or B occuring wil be given

by the sum of the probabilities:
P(either A or B) = P(A) + P(B) (2.3)
Similarly, the probability of eiifher A or B or C occurring will be
P(either Aor B or c) = P(A) + P(B) + P(C) (2.4)

Here it is assumed that the labels A, B, C, . . . refer to mutually exclusive alterna-
tives, so that if the event A occurs, the events B, C, .cannot occur, and so on.
The above relation for combining probabilities simply amounts to addition of the
fractions of occurrences of the various events A, B and C, to find the total frac-
tion of occurrences of some one of the events in the set A, B, C.

These relations may easily be generalized for any number of alternatives. For
example, consider an experiment with six possible outcomes, such as the six
possible faces of a die which could be turned up when the die is thrown. Imagine
the faces numbered by an index | that varies from 1 to 6, and let P, be the
probability that face j turns up when the die is thrown. Some one face will
definitely turn up, and so the total probability that some one face wil turn up will
be equal to unity, Also, the probability that some one face will turn up is the
same as the probability that either face one, or face two, or face three, or,. . . ,

or face six will turn up. This will be equal to the sum of the individual probabili-

1= P (2.5)

i=1

ties P,. Mathematially,

In words, this equation expresses the convention that the probability of an event
which is certain is equal to ‘. It also utlizes a generct“zc:‘tion of the rule given in
Equation (2.3), which says the probability of either A or B is the sum of the
probabilities of A and of B.
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2.3 CALCULATION OF PROBABILITIES BY COUNTING

2.4

Given a fair die, there is no reason why the side with the single dot should come

up more often than the side with five dots, or any other side. Hence, according to

the postulate of equal a priori probabilities, we may say that P, = P,, and,
indeed, that P, = P, = Py = P, = Pg = P,. Then Zf’:, P, = 6P, = 1, or
P] = ]/6 and hence P, = ]/é for all i. This simple calculation has yielded

the numerical values of the probabilities P,. A general rule which is very useful

in such calculations may be stated as follows:

The probability of a particular event is the ratio of the number of ways this event

can occur, to the total number of ways all possible events can occur.

Thus, when a die is thrown, six faces can turn up. There is only one face that has
two dots on it. Therefore, the number of ways a two dot face can turn up, divided
by the total number of ways all faces can tum up, is '/, .

If one card is drawn at random from a pack of cards, what is the probability
that it wil be the ace of spades? Since the ace of spades can be drawn in only

one way, out of a total of 52 ways for all possible cards, the answer is

(1 ace of spades)
P = (2.6)

(52 possible cards)
or P = ‘/52.Likewise, if one card is drawn from a pack, the probability that it
will be an ace is (4 qv:es)/(52 possible cards) or P = “/52 = '/13. We can also

consider this to be the sum of the probabilities of drawing each of the four aces.

PROBABILITY OF SEVERAL EVENTS OCCURRING TOGETHER

Next we shall consider @ slightly more complicated situation: flipping a coin
twice. What is the probability of flipping two heads in succession? The possible

outcomes of this experiment are listed in Table 2.1.

TABLE 2.1 Different possible
outcomes for flipping a coin twice.

First Flip Second Flip
heads heads
heads tails
tails heads
tails tails

Since there are two possible outcomes for each flip, there are two times two or
four possible outcomes for the succession of two coin flips. Since there is no
reason to assume that one of these four outcomes is more probable than another,

we may assign each of the four outcomes equal probabilities of V4. The total
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number of outcomes is the product of the number of outcomes on the first flip and
the number of outcomes on the second flip, while the number of ways of getting
two heads is the product of the number of ways of getting a head on the first

fip and the number of ways of getting a head on the second flip. Thus,

P(two heads in succession)

# of ways for heads on flip 1 # of ways for heads on flip 2

# of outcomes on flip 1 # of outcomes on flip 2

P(heads on fip 1) X P(heads on flip 2)

1 X 1 1
= - - = - 2.7
2 2 4 (2.7)

wple If a die is rolled twice in suc‘:EESSion, what is the probability of rolling the snake
eye both times?

tion P(snake eye twice) = () x ()= Ys-

These results illustrate another general property of probabilities: If two
events A and B are independent-that is, if they do not influence each other

in any way-then the probability of both A and B occurring is
P(A and 6) = P{A)P(B) (2.8)

In words, the probability of two independent events both occurring is equal to
the product of the probabilities of the individual events.

nple If you throw a six-sided die and draw one card from a pack, the probability that

you throw a six and pick an ace (any ace) is equal to

1 4\
- X —|= —
<<s 52> 78

Another way to obtain the answer is to divide the number of ways of getting the
six and any ace (1 x 4), by the total number of ways of getting all possible
results (6 x 52), or

(1x4) 1

6 x 52) = 78

in this case.

2.5 SUMMARY OF RULES FOR CALCULATING PROBABILITIES

We may summarize the important features of the probability theory discussed so

far in the following rules:
(1) The probabilty of an event that is certain is equal to 1.
(2) In a set of events thf can occur in several ways, the probability of a

particular event is the number of ways the particular event may occur, diivided by

the total number of ways all possible events may occur.
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(3) (Postulate of equal a priori probabilities): In the absence of any contrary
information, equivalent possibilities may be assumed to have equal probabilities.
(4) If A and B are mutually exclusive events that occur with probabilities
P(A) and P(6), then the probability of either A or B occurring is the sum of the

individual probabilities:
P(A or B) = P(A) + P(B) (2.9)

(5) If A and B are independent events that occur with probabilities P(A)
and P(B), then the probability of both A and B occurring is the product of the

individual probabilities:

P(A and B) = P(A)P(B) (2.10)

DISTRIBUTION FUNCTIONS FOR COIN FLIPPING

In order to introduce the idea of a distribution function, we continue with some
examples of coin-tossing. Distribution functions are functions of one or more inde-
pendent variables which label the outcomes of some experiment; the distribution
functions themselves are proportional to the probabilities of the various out-
comes (in some case’s they are equal to the probabilities). The variables might
be discrete or continuous. Imagine, for example, a single experiment consisting
of flipping a coin N times, when N might be some large integer. Let ny be the
number of times heads turns up in a particular experiment. If we repeat this
experiment many times, then ny can vary from experiment to experiment. We
shall calculate the probability that ny heads will turn up out of N flips; this
probability will be denoted by PN (nH). Here the independent variable is ny;
and the quantity PN(HH), which for fixed N is a function of ny, is an example
of a distribution function. In this case, the function only has meaning if hg is a
nonegative integer not gzreofer than N.

To get at the problem of finding PN(nH), we define PH] to be the probability
of getting a head in the first toss and P;; to be the probability of getting a tail
(both are Y2 for a fair coin but differ from ¥z for a weighted coin). Then P,“ +
Pry = 1. Likewise for the second toss, Pys + Pra= 1. If these two expressions
are multiplied together, we get P,y 1Pyy + PyiPra+ PriPus+ PriPry= 1.
Note that these four terms correspond to the four possibilities in Table 1, and that
each term gives the probability of getting the heads and tails in a particular
order.

In N tosses,
(Py + Pri)(Pua + Prz)e e+ (Pun + Prv) = ] (2.11)

and when the products on the left are carried out, the various terms give the
probabilities of getting heads and tails in a particular order. For example, in
three tosses, the product of Equation (2.1 1) contains eight terms, one of which is
P71 Py,Pr3. This is equal to the probability of getting a tail, a head and a

tail, in that order, in three tosses. If we were interested only in the probability of



2.6 Distribution functions for coin flipping 17

getting a given total number of heads ny in N tosses regardless of order, we
WOUId take all the terms which contain ny factors of the form PH;, regardless of
the subscript numbers, and simply find their sum. This is equivalent to dropping
all numerical subscripts and combining terms with similar powers of P,.

If the expression on the left of the equation, (P, + PT')N = 1, is expanded,
the term proportional to (PH)"H(PT)N%HJS the probability of getting ny heads
ond N = ny tails in N tosses, regardless of order. According to the binomial

theorem.
N N ! N
N ' Ay N-ny
Po + PN = D {— PP
ap=o (nul(N ny)l] (2.12)
where zero factorial (O!) is defined to be one and n! = n(n = 1)(n = 2) * +«

3:2+1. The reader may recognize the binomial coefficient N!/nH!(N -~ n,)! as
the number of ways of selecting ny objects from a total of N objects, regardless
of order, or in our case, the number of ways of getting My heads in N tosses. Thus,
0 given term is the total number of different ways of getting ny heads times the
probability, (PH)"H(PT)NinH, of getting ny heads in one of these ways. There-

fore, in the special case of a fair coin when P, = P; = Y% the probability of

getting ny heads in N tosses, regardless of order, is

N ! 1

Py(nu) E@in”)! N

(2.13)

In Figures 2.1 through 2.4, the probability Py(n,) of Equation 2.13 is plotted
as o function of nyfor N = &, 9 0, 30 and 100. It may he seen that as N becomes
larger, the graph approaches a continuous curve with a symmetrical bell-like
shape. The function Py(ny) is called a probability distribution function, because

it gives a probability as a function of some parameter, in this case ny.

iple I(a) Consider a coin which is loaded in such a way that the probability P, of
flipping a head is Py = 0.3. The probability of flipping a tail is then P; = 0.7.
‘What is the probability of flipping two heads in four tries?

ion Use Equation (2.13) with N = 4, ny = 2; the required probability is
41
—— (Py)?(P;)* = 0.2646
o () (Pr)

iple 1 (b) What is the probability of getting at least one head in four tries, i.e. either

one or two or three or four heads?

‘tjon The probability of getting at least one head is the same as the probability of
not getting four tails, which is one minus the probability of getting four tails.

In this case,
) ) 4! 0/p \4
P (getting all four tails) = ol (Pu) (Pr)" = 0.24071;
Therefore,

P (at least one head) = 1 = 0.2401 = 0.7599
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2.7 More than two possible oufcomes

2(a) If the probability of getting all the forms filled out correctly at registration
is 0.1, what is the probability of getting all forms filled out properly only once

during registrations in three successive terms?

The probabilty of not getting the forms correct is 0.9 each time. Then the desired
probability is

31 o2
S5 0)(09) = 0.243

2(b) What is the probability of filling out the forms correctly in one or more of

the three registrations?

This is one minus the probability of doing it incorrectly every time or

1 - (0.9°=0.271

DISTRIBUTION FUNCTIONS FOR MORE THAN TWO POSSIBLE
OUTCOMES

Suppose we consider another experiment in which there are four possible results,
A, B, C, and D, in asingle trial. The probabilities for each result in this trial ore,
respectively, P, Py, Pc and P, =1 — P, — P; — P,. If the quantity on the left

side of the equation

(PA + Py + PC + PD)N =] (2.14)
is expanded, the term proportional to
N-— —ng-
(Pa)™ (Pa)"™ () (Po)” "4 78 7€

is the probability that in N trials result A occurs N4 times, B occurs 'ng times,
C occurs n¢ times and, of course, D occurs np times, with np = N Nnag — Ng = NC.

A generalized multinomial expansion may be written os follows:

. N! I oMb
(X+y+z+w)N= X xpyqzwpq,

£ |plgiiiN = p = q - )

p+q+rIN

(2.15)

The probability that A occurs ns times, Boccurs n;times, and C occurs ng

times in N trials is therefore

N!
na'lng!nc(N = na — ng — n¢)!

n n N-ny—ng—n
Pny(na,ng,nc) = 1 (Pa) A(Ps) B(Pc) AR
(2.16)

The generalizotion to the case of any number of alternatives in the results of a

single trial is obvious.

19
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Probability

In throwing a die three times, with six possible outcomes on each throw, the
probability of fhrowiing two fours and a three is

3! <1°(1°1‘121°1° 3.2 1 1

6 ] 6 6 6 2 43 72

01011121010! \6

EXPECTATION VALUES

One of the important uses of a probability distribution function arises in the
computation of averages. We shall obtain a general formula for the computa-
tion of an average using a distribution function. Suppose that over several
months a student took ten examinations and made the following grades: 91 once,

92 twice, 93 once, 94 four times, 95 twice. Figure 2.5 is a plot of the number,

fin)

MR

90 91 92 93 94 95

Figure 2.5. Grade distribution function.

f(n), of times the grade n was made, as a function of n. This function f(n) is also
called a distribution function, but it is not a probability distribution function,
since f(n) is the number of occurrences of the grade n, rather than the proba-
bility of occurrences of the grade Nn. To compute the average grade, one must
add up all the numeriicql grades and divide by the total number of grades. Using

the symbol (n) to denote the average of n, we have

91 + 92 + 92 + 93 + 94 + 94 + 94 + 94 + 95 + 95

(n)
" T+ T+ 141 +1+1 414141 +1

(2.17)

In the numerator, the grade 91 occurs once, the grade 92 occurs twice, 94 occurs
four times, and, in general, the grade n occurs f(n) times. Thus, the numerator
may be written as (1 x 91) + (2 x 92) + (1 x 93) + (4 x 94) + (2 x 95) or,
in terms of n and f(n), the numerator is Z n f(n), where the summation is over
all possible n. In the denominator, there is a 1 for each occurrence of an exam.
The denominator is then the total number of exams or the sum of all the f(n).

Thus, a formula for ihe denominator is Z f(n), summed over all n. Now we can
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write a general expression in terms of n and f(n) for the average value of n. It is

Z n f(n)
{ny=5—— (2.18)
f(n)

In this case, the average grade turns out to be 93.4. If the student were to take
several more examinations, then, on the basis of past (experience, it could be
expected that the average grade on these new examinations would be 93.4.
For this reason, the average, <n>, is a so called the expectation value. Expecta-
tion values are of considerable importance in quonturn mechanics.

As a further example, suppose you made grades of 90, 80, and 90 on three
examinations. The expectation value of your grade would be (80 +2 x 90)/
(1 +2) = 86.67.

2.9 NORMALIZATION

For any distribution function f(n), the value of the reciproc:0| of the sum Z f(n) is
called the normalization of the distribution function. It Z: f(n) = N, we say that
f(n) is normalized to the value N, and the normalization is I/N. Since the sum
of the probabilities of all events is unity, when f(n) is a probability distribution
function, it is normalized to wunity:

D fn)= 1 (2.19)

Equation (2.18) refers to the expectation of the ndependent variable, <n>
However, in some applications it might be necessary to know the expectation

3

values of n7, or n”, or of some other function of n. In general, to find the average

or expectation value of a function of n, such as A(n), one rnay use the equation:

(A(n)) = ——=— (2.20)

.10 EXPECTATION VALUE OF THE NUMBER OF HEADS

For a more detailed example of an expectation value calculation, we return to
the flipping of a coin. As wds seen before, if a number of experiments are per-
formed in each of which the coin is flipped N times, we would expect that, on the
average, the number of heads would be N/2, or <nH> = N/2. To obtain this
result mathematically using Equation {2.18), we shall evaluate the sum

N

{om) = Z nyPuing) (2.21)

nH:O
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Herer(n) = ZPN(”H): 1, since Py(ny) is a probability distribution function
‘with a normalization of unity. Therefore, the denominator has been omitted.

From Equation (2.13) Py(ny)= N/{2%4 (N ny)!} for a fair coin. Hence,

nyN!

() = E —_— (2.22)
2%y N = n)Y]
‘The result is indeed N/‘,Z, The reader who is not interested in the rest of the details
of the calculation can s.kip to Equation (2.26).
. . N N

We have to evaluate the summation in <nH> = Z,,H:OnHN!/[Q ny (N n)t].
We can calculate this by a little bit of relabeling. First, note that the term corre-
sponding to ny = 0 does not contribute to the sum because the factor n, is inside
the sum, and in the denominator there is O!, which is defined to be 1. Therefore,
instead of going from 0 to N, the sum goes effectively from 1 to N. It is easily
verified that after using the following identities:

NI NN =) M e 1 W) = =1 = [y = 1)
gt (g = 1)!
(2.23)
and

2N = .M (2.24)

Then factoring out an N/2, we get

N — 1)

(nH> ~ N ( ) (2.25)

e

ot 28 g = DUN = 1 = [0y = 1))

Then, for M= ny ~ 1, the summation over Ny from 1 to N can be rewritten

as follows:

o (N = 1! _1N<1 1)“*':1N
(= on mZ:rJ[?'i-']m!(N—'ltm)!]_Q 2" 2 2 (2:20)

This result agrees with our intuitive idea of an expectation value. The result does
not mean that, in an actual experiment, heads will come up exactly 2 N times,
but heads will only come up Y2 N times on the average after repeating the

N tosses many times.

EXPERIMENTAL DETERMINATION OF PROBABILITY

Our previous discussion has suggested that we could experimentally measure
the probability of SsQme particular result by repeating the experiment many times.
That is, the probability of an event should be equal to the fractional number of
times it occurs in a series of trials. For example, if you know a coin is loaded, you
cannot assume that P(heads) = P(tails), and it might be difficult to calculate

these probabilities theoretically. One way to find out what P(heads) is, would be
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to fip the coin many times, compute n,/N, and set the result equal to P(heads).

Thus, if N is very large, we should find that

ny (n
- =<iz— = P(heads) (2.27)
N N
0.6 -
S V\/
YA . Nttt
0.5 / VT TN Z )
g 7 1.0
0.44— o 2 2 /N
L
e
0.3 d
0.2
0.1
oo bl e L
5 10 50 100 500 1000 3000
N

Figure 2.6. Graph of fractional number of } eads in N tosses.

Figure 2.6 is a graph of nH/N as a function of N in an actual experiment. Note

the logarithmic horizontal scale. From the graph we see that for

n
N:],—’i‘zo;
N
n
N= 10, 2. 03
N
Ny
N = 100, — = 052

As N becomes very large, it is seen that nH/N tends to Y2 . In this case, therefore,

n , n

P(heads) = <—”> = lm " ! (2.28)
N Nz N 2

Although, as N —* 2, one would obtain a unique value for P(heods), one may

see from the graph that in actual practice the value of nH/N for any finite N may

be greater or less thun ]/2 , and generally could oscillate about ]/2 in some ran-

23
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2.12

2.13

dom fashion; the amplitude of these oscillations should decrease, however, as N

increases.

EXPERIMENTAL ERROR

Since, in practice, we have to stop an experiment after some finite number of
repetitions of the measurements, we would like to know how much error we are

making on the average when we do this. In Figures 2.7 and 2.8 are given the

/N N==4 /N N-10
1.0k
1 .
i- o o . -
- .
B . O e — o-— 05— -®--®--———— -
- [ ]
| - o [
i 4 =
. [ L1 ] ol vy
1 2 3 4 5 6 7 1 2 3 4 5 6 1
Experiment  number Experiment number
Figure 2.7. Figure 2.8.

actual fractions nH/N' obtained in several repetitions of an experiment in which
a coin was flipped N times. In the first experiment, N = 4; in the second,
N = 10. One can see qualitatively that the points in the N = 10 case lie gen-
erally closer to the mean value of Y2 than they do in the N = 4 case. Judging
roughly from the scatter of the values of nH/N in Figure 2.7, one might expect
the error made in stopping at N = 4 to be about 0.2, whereas in Figure 2.8 it
would be slightly smaller. Thus, generally speaking, we expect the error to

decrease as the number of repetitions of the measurement increases.

RMS DEVIATION FROM THE MEAN

How can we define a precise numerical measure of the error? One way would be
to average the distances of the points nH/N from the mean value <nH>/N. In using
such a measure we would have to be careful to take the magnitude of the
distances; if we took spome distances as positive and others as negative, we might
calculate that the error was zero, which is not reasonable. A similar measure of
error which is better for many purposes is the square root of the average of the
squared differences of the points from the mean value. This is called the root
mean squared deviation from the mean.

To illustrate what is meant, let us imagine that a coin is flipped N times. The
mean(nH> for a large number of experiments N should be %2 N. Consider the
difference ny = <n,1:> for a single experiment with N flips. This difference is
called the deviafion from the mean. The squared deviation from the mean would

be just (nHﬂ-<nH>)2. Here <nH>, as usual, is the average of ny over many



2.14 RMS deviation for coin flipping

experiments, and ng is the result for any one experiment. If we repeated the

experiment many times and averaged this squared deviation from the mean,
2 ’ ’ Ay 2 )

(ny -~ <nH>) , over the experiments to obtain <(nH <nH/>) >, then this averaged

squared deviation from the mean would be a measure of the square of

the expected error. Thus, 0 measure of the expected error would be

\/((n,, - <nH>)2>,the root mean squared deviaticn from the mean, or rms
error for short.

The mean squared error may be reduced to another form which is also some-

times useful. First, write out the square as follows:

(ny — (M))Z = n? = 2nH<nH> + <n.~,)2 (2.29)

If we take the average of both sides of this equation, then, since the average

of a sum of terms may be computed term by term, we have

(= () = @F) — @oulnw) + ) (2.30)

But from Equation 2.20, the average of @ constant is iusf the same constant,
so <<nH>z>: <nH>2.AIso from Equation 2.20, for any constant C we have
<CnH> = C(nH>and hence <2nH<nH>> = 2<nH><n,.,>. Combining these results, we

obtain

(- - na))?) = (k) = {n)” (2.31)

This result is quite general, for the mean squared error of any quantity; it was
derived here using the variable ny, but the derivation would be the same for
any other variable. The equation states that the mec«an squared deviation from

the mean is equal to the average of the square of the variable, minus the square
of the average of the variable.

.14 RMS DEVIATION FOR COIN FLIPPING

To illustrate the use of rms error as a measure of error, we shall consider the
case of coin flipping with a fair coin, and use the probability

N!

, 1
Puimu) = na(N = ng)! 28

(2.32)
to calculate the rms error as ¢ function of N. We know that <nH> = N/2; hence,
in this case, <n,1,>2 = N?/4. To calculate (n%), we need to find
N 2
ngN! 1
—
2o N — ny)t 2

The result of the calculation [§ nf, = Y% N%+ YnN. Anyone not interested in the
details of this calculation should skip to the result in Equation 2.38.

As in the evaluation of nyg previously, we shall use ¢ relabelling trick to evalu-
ate the sum. We write nﬁ = nH(nH - 1) + ny, and use the fact that the
average of a sum is the sum of averages. Then <n,24:> = <nH(nH 1)) + <nH>.

25
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Since we already know that (nH>= Vz N, we need to calculate only
(nu(ny = 1)). This is
N
(rulon -- 1)) = 2 nulny = 1)Pu(n)
ny=0
N

- Z (g — UNY (2.33)
Ao [2%n N = n)Y]

The terms corresponding to ny = 0 and ny = 1 do not contribute because of
the presence of the factor nH(nH = 1) in the numerator. The sum then goes only
over values of ny from 2 through N. Now we will use the following identities to

reduce the sum to something we can evaluate:

nH(nH bl ]) 1
n,! (ny- - 20

N = n)l = (N = 2 = [ng = 2])t; 2V = 427 (239

Nt = N (N =T)N=2);

Factoring out % N(N = 1), we get
N

(i = 1) = %N(N -, (N — 2)!
wye2 (27 X - 2N ~ 2 = [ng - 2))]

(2.35)
The sum may be evaluated by letthg m = pny — 2. Then
1 - (N - 2)!
— 1) = =N(N -1 —
(rulrn = 1) = 3N )MZ:;, 2" Zm(N - 2 — m)]
N-2
=1N(N—1)l+l =1N(N—1)
4 2 2 4 (2.36)

Collecting the results, we have

(i) = Ll =1y ) +{w)y = ~NIN=1)+ %N: %N(N + 1) @3

Finally, the root mean squared deviation from the mean is

Vo =G = VG = oy = i - I LR

2

(2.38)

This rms deviation from the mean is the approximate number of heads by
which we could usually expect the observation of ny to differ from the expecta-
tion value, <nH>= N/2, in one series of N flips. We could call this the ap-
proximate error in finding the expectation value experimentally if we do one
experiment with N flips. The fractional error in N tosses, i.e. the error in finding
<nH>/N, is then the error divided by the number of tosses, or I/N times the rms
deviation. The fractional error is therefore % v/N/N = 1/(2V/N). Thus, in at-
tempting to measure a probability such as P(heads), we would have to say that

after N flips in which ny, heads turned up, the probability would be equal to the
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fraction ny /N but with a fractional error 1/(2\/N) Hence, we would write
S
P(Heads) = (ny/N) += 1/(2V N).

mple 1. After one flip of a fair €oin, what would be the rms error in the measured

probability?
ution 2 /A/N = Y2 (1) = 0.5.

mple 2. How many times would you have to flip the ¢oin to reduce the uncertainty
in the measured probability from 0.5 to 0.057?

ution 0. 05 = % /A/Nor N = ¥ /(0.05)% = 100 flips.

In Figure 2.6 the dashed lines are drawn at Ya & Vz/m to give an idea of
the limits within which one could expect the graph to vary. This square root type
behavior of an error occurs in many other places in physics. For example, in
experiments in which the rate of decay of radioactive substances is measured,
one simply counts the number N of decays in some time t. The measured counting
rate is then N/f, and it can be shown by arguments very similar to those for coin
flipping that the fractional @rror in the measured rate is of order of magnitude
]/ \/ﬁ Thus, to obtain good statistics, i.e. low error, in counting experiments,
it is necessary to take large numbers of counts. To get the counting rate correct
to three significant figures or a fractional error of 0.001, one would need

around one million counts.

.15 ERRORS IN A COIN-FLIPPING EXPERIMENT

We may now compare this theory of the rms error with the experiments depicted
in Figures 2.7 and 2.8. In Figure 2.7, each experiment (corresponds to N = 4.
For this value of IV, the theory gives the fractional rms deviation to be
Ya /\/Z = 0.25. Next, we will use the data of Figure 2.7 to find the experimental
rms fractional deviation for this particular set of trails. To do this, we simply cal-
culate the square root of the average of [(ny/N) - <nH/N>]2 over the seven
experiments. The expecfcﬁc»n value (nH/N> is just the average of the results of
these experiments and is 0.571. We may then obtain Table 2.2:

TABLE 2.2
Experiment Number Deviation (Deviation) 2
1 0.179 0.0320
2 0.179 0.0320
3 -0.071 0.0050
4 -0.071 0.0050
5 0.179 0.0320
6 -0.321 0.1030
7 0.071 0.0050

Sum = 0.2140

27
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The average deviation squared is then 0,2]4/7 = 0.0306, and the rms deviation
is 'V 0.0306 = 0.175. Based on these seven experiments, the result of the first

experiment could then be expressed as

2w = 0.750 =+ 0.175 2.39
N = 0. . (2.39)

Likewise for the third experiment, (nH/N> = 0.500 £+ 0.175. This is in reason-
able agreement with the theory, which supposes a very large number of experi-

ments instead of seven and gives for the case N = 4,

<n—”> = 0.500 +0.25 (2.40)
N

The reader can perform similar calculations for the data given in Figure 2.8
in the case N = 10. Here the experimental result for the rms deviation from the

mean is 0.105. The theoretical result is

<n”> = 0.500 4 0.158 2.41
NV : (2.41)

ERRORS IN AVERAGES OF REPEATED EXPERIMENTS

Errors of the type we have described, depending on 1/\@; also arise when
repeating experiments which measure the average value of some physical
quantity, such as the diameter of a cylinder or the length of an object. Suppose
that an experiment is performed in which the quantity x is measured N times. It
must be kept in mind here that a single experiment means N measurements of
the value of the quantity, and the result of an experiment is the average value
of the quantity for these N measurements. Then we ask: What is the error in the
average value? If the experiment is repeated, it should give a new average value
that does not differ from the previous one by much more than the error.

What is being measured here is an average itself. This average is not the same
as the expectation value. The expectation value would be equal to the average
if the number of measurements, N, approached infinity.

Suppose that the N individual measurements in one experiment are X; ,b X,

Xy The result of the experiment is then (x; + x; ++ « « + xy)/N. sup-
pose the true, or expectation, value of the quantity is X. This would be the aver-
age of an extremely large number of measurements. The deviation from the true
value X in a particular experiment is

Xy + X + 0+ Xn

— - X

N

We can then get a measure of the experimental error by computing the rms error,

averaged over many experiments of N measurements each. Call the error EN.
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Then

En = -‘/«X‘ + Xz L LR x>2§ (2.42)

To illustrate how this may be worked out, we shall take the case N = 2, only

two measurements in an experiment. Then

Ey = ]/<_(’“_+ "2:&&.
N
_ 1/(([x] - X+ [xs - XD
N2

_ 1/< T 206 — X)xg — X) + (x; — X)T)

NZ

_ 1/{<<x1 B R TR T §) Rk (I 110 M

NZ

for N = 2. Consider the term <(x]—X)(x, X)). Whereas Gterm like
((x, =X)*) is always pos‘\five, (xW—X) is negative about as often as it is
positive, and so is (x; = X). Since the values of (x; = X) and (x, X)
are independent of each other,, their product wil also be negative as often as it
is positive, and the expecm'rion value <(X| = X)(x, = X)) will be zero. Hence
the only remaining terms produce:

Ey = -{<(X1 - X)2> + <(Xz - X)2>}
N N

(2.44)

This was for the cuase N = 2. However it is easy to see that a similar argu-
ment applies for any N; all the expectation values of the cross-terms which
arise in the square [{x; — X) + (xg =X) + oo 4 (xn = X)]:2 will be nearly
zero. Therefore,, for any N, we can say

1/{< e XD e = XD A e = XD
N2

However, since the svbscrip-ts on the x’s denote nothing more than the order in

which the measurements are made, we expect that, on the average, the quantity

<(x,- X)2> will be the same for all x,, or

X)) = {x; - X)) = {xn = X%y = £ (2.46)

We call this average Ef, since it is the mean squared error of a Sing\le measure-
ment, averaged over many experiments. That is, E1 is the rms deviation if we
consider that the experiment consists of one measurement rather than N medsure-

ments. Then, since there are N terms like ((x, = X)),
NE? E,

Ey = — = (2.47)
N VN

29



3 0 Probability

Thus, the error in the result of an N-measurement experiment is less than the
error in the result of (1 one-measurement experiment by @ factor of I/-\/N. To

see how this works in practice, Table 2.3 gives the actual results of 24 measure-

‘TABLE 2.3 Results of Six Experiments, Each Consisting of Four Measurements of the
Length of a Cylinder. Distances in Cenfimeters.

n (2) (3) (4) (5) (6)
4.11 4.07 4.08 4.05 4.09 4.06
4.06 4.05 4.10 4.06 4.08 4.10
4.06 4.06 4.09 4.09 4.06 4.07
4.08 4.08 4.09 4.10 4.04 4.08

Av. = 4.0775 Av. = 4.065 Av. = 4.090 Av. = 4.075 Av. = 4.0675 Av. = 4.0775
Overall average of the results = 4.0754 cm

ments of the diameter, in centimeters, of @ cylinder, using vernier calipers. If we
regard these as 24 separate experiments in which N = 1, then we can compute
the mean value and the error for these 24 experiments. The mean of the 24
measurements, which we shall take os the true value, is X = 4.0754 cm and the

rms error E, for one measurement is

Z(deviotions)%
24

= 0.018 cm (2.48)

Let us next regard the data as six experiments of four measurements each,
in which the quantity being measured is the average of four measurements. In
this case, N = 4, so the error in the average of the four measurements should
be about E, = E,/‘\ﬁ = 0.009 cm. By subtracting the overall average,
4.0754 cm, from each of the averages of the six experiments, we can find the

experimental deviations of the averages from the mean. Then the experimental

EA is

/Z(deviaﬁons of averages)?
/
6

E, = 1 = 0.0081 cm (2.49)
This compares fcvorC|b|y with the result, 0.009 cm, obtained using Equation
(2.47). Actually, while we used the mean of 24 experiments as the true value, this
itself has an rms error associated with it. An estimate of this error, again using
Equation (2.47),is E./vﬁ = 0.018/4.90 = .0037 cm. The reader may well
reflect that these differing measures of error for the same data look somewhat
suspicious; however, this simply means that quoted errors often depend on the

method of data handling.

2.17 PROBABILITY DENSITIES

So far, we have considered distribution functions which are functions of a discrete

variable. In many cases, the independent variables are continuous. Consider, for
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example, a thin circular disc on a horizontal axle. If the disc is given a spin
and then allowed iG come to rest, what is the probability that some one point on
the rim of the disc will be exactly on top? Obviously, since one point is only one
of an uncountable infinity of points along the rim, the probability will be zero.
However, let us introduce a coordinate system fixed in the wheel, and describe
points on the rim in terms of Jn angle 0, with 0 varying continuously from 0 to 2
to describe all different points on the rim. If there is no reason why one portion
of the disc should come to the top more often than any other portion, then the
probability that some portion in the infinitesimal range d0 will come up, denoted
by Pdg, is Pdg = d0/27r. The factor 27r in the denominator is chosen so that the
total probability that some point (any point) on the rim comes to the top is unity.

We can check this because

2x
ka=f ﬁ=2—”=1 (2.50)
0

all de's 2 2w

Once an infinitesimal probaloility of this nature is known, it can be used to
find the probability that an event takes place in a given range.. Thus, the
probability that some point in the portion of the rim between 7r/6 and 7 will
come to the top will be the integral of dﬂ/?ﬂ’ between the limits of 7I'/6 and T.
The result is 5/12. The coefficient of dfl in the expression for Py is called o
probability density. In this spe(:ia| case, the probability density is ]/27(’. In gen-
eral, for the continuous variable 0, if the probability of finding 8 in the range
di is given by an expression of the form Pgy = p(())de, then p(lg) is called
the probability density. In our example, the probability density, p(B),. was a
constant; but if, for instance, there were more friction on one side of the axle
than the other, the wheel would be more likely to stop in certain positions, and
p(0) would not be independent of 8.

Similarly, with a different p\hysiccﬂ situation described by a variable x, and
given the probability density p(x), the probability that x is to be found in the
range dx will be Py = p(x) dx. A probability density is thus the probability

per unit x, for the continuous variable x. Moreover, the probability that x will be

pix)

J

X X2

Figure 2.9. Crosshatched area under the probability density curve is the |:>\'0bubi|i1y
that a measurement of x will yield a value between x, and x,
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X
2
found in the range between x; and Xz will be given byf p(x) dx. This is just

X1
the area under the ‘curve of p(x), versus x between the limits X; and X; (see

Figure 2.9). Probability densities have the property that, when integrated over all

possible values of x, the result must be the total probability that some value of

X occurs, or p(x)dx =1

all x

EXPECTATION VALUES FROM PROBABILITY DENSITIES

We shall next show how to compute an average using a probability density.
You recall that for a discrete probability distribution function, P(x;), of the dis-

crete variable X;, the rneon value of x is given by

<x> = Z x; P(x;)
all x;
where P(x;) is the probability that X; occurs. It is unnecessary to divide by
ZONX.‘ P(X,») here, since the sum of the probabilities is unity. Now consider the
entire range of the continuous variable x to be broken up into small increments
Ax,. If x, is a point in Ax,-, then the probability P(x,-) that it lies in the range Ax,
will be given approximately by P(x;) = p(x;) Ax,, where p(x) is the probability

<«

density. Thus, (x) = ‘:’_l,ix,-p(x,») Ax,-. Taking the limit as Ax,- —* 0, we get

() = fxp(x)dx. (2.51)

all x

1. Consider the probability density defined for 0 < x < 1 by

2,, 0<x< ¥

P =19 m<x<1

A plot for p(x) is given in Figure 2.10. If we wish to compute the average value
of some quantity using the given p(x), we should first check to see that p(x) is

correctly normalized. It will be correctly normalized if the integral

fp(X) dx

all x

/2
is equal to one. In this case, fp(x)dx = f 2dx = 1, so the normalization is
0

correct. The limits on the integral are 0 and Y2, because in this special case,
when x > %2, p(x) is equal to zero. To find the expectation value (x), we should
compute the integral xp(x)dx. In this case also, the limits on the integral wil be

from 0 to Y2 The integration may then be performed as follows:

/‘ 172 !
= 2 d = -
() A x dx 2
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plx)

Figure 2.10.

ple 2. Consider a particle in a one dimensional box with ends at x =0 and x = 2.
The probability density for finding the particle outside the box is zero. In quan-
tum mechanics the probability density is ¥/(x) J 2, where the wave function ¢/(x)
satisfies a wave equation called the Schradinger equation. Suppose the proba-
bility density, lyﬂ(x) 2 s given by

2 _ 15/ 2 1 4
L) [ 7= px) = = [x* = - x
16 4
for 0 < x < 2. Outside this range, p(x) is zero. A plot of this function is shown
in Figure 2.1 1. This probabiliiy density p(x) is correctly normalized so that

pl(x)
[ I | T I
| 1
ys ]
I ]
| a
Vo / -1
L i
[ 4
1 i | X
0 ! 2

Figure 2.11.
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2
fp(x)dx = ]. We can calculate the averuge value or expectation value of x
0

2 2
<x> =[ xp(x)dx = % \ x<x2—‘];x‘>dx

as follows:

Mo

-5 ‘x4_J.,xb
16 24

Let us also calculate the rms deviation of x from the mean. This is a measure of

o 4

the spread of the wave function ¢(x) The rms deviation is

=GN

We know that the expectation value of X, <x>, is 5/4. Hence we wish to calculate

the expectation value

(x-3) =6 = 1=y - 2

from Equation (2.31) It is

5\2 o, 25 15 [ . 1 é> 25
2 = _ L2 _1° -2 dx = 22
<<x 4>> /c 0pbgdx - =g L\ T g )T

_15(32 _128) 25 _ 17 _ 44518
16\5 28

Then the rms deviation from the mean is

VZ(Z_% =v/0.1518 = 0.390

The same result can be obtained by straightforward calculation of

(=3[ b=+ e

but the algebra is more tedious.

GAUSSIAN DISTRIBUTION

An interesting probability density, called the gaussian distribution, arises when a
fair coin is flipped an extremely large number of times. This same distribution
arises in the majority of physical measurements involving random errors. In

f—l’ipping a coin N times, the discrete probability distribution function was, from

Equation (2.]3),

Pul(ny) = N! (2.52)

2" (N = n,)]
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In the limit of very large N, this distribution function is sharply peaked about
the average value of ny, %2 N. This tendency may be seen by referring to
Figures 2.1 through 2.4.

We can obtain an approximate analytical expression for PN(n,,,), for large N,
by using Stirling’s approximation for the factorials: For large n, In (n!) 2~
om @ + (n + Vz)ln (n) = n. This, together with the approximation

n 1+ b)) = b - ]/2 b2 for small b, leads to the following approximate result

for PN(nH):
2 —(ny — N/2)?
Py(ny) =~ %—; exp —(n—",\# (2.53)

when N is large and ny is neor its averoge, Y2 N. A graph of Equation (2.53)

is shown for N = 100 in Figure 2.12. The corresponding discrete curve of Fig-

P oo fmy)

0.1 —

0.08 1

0.04

0.02 ;
P

s b
40

50 60 70

0

Figure 2.12. Comparison of the discrete probability distribution P4 (”H) with ap-
proximate function, a Gaussian. The Gaussian curve is drawn with o dashed line.

ure 4 is shown on the some graph. It may be seen that for N = 100, the cpproxi-
motion of Equation (2.53) is olready extremely good.

The exponential curve of Equation (2.53), peaked symmetrically about YN, is
called a goussian or normal distribution. It occurs often in probability theory and
in classical statistical mechanics. Although Ry is still a discrete variable '}aking on
integral volues, when N is sufficiently large we can lump many of these integral

values together and regard Py(ny) as a probability density.

EXPECTATION VALUES USING A GAUSSIAN DISTRIBUTION

In other chapters we will need o number of expectation values using the goussian

distribution. To illustrate the types of integrals which arise, let us find the root
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medn squared deviation of x for the gaussian probability density p(x), given by

1 ~(x = x)’

(x)dx = dx
P‘) X Varn o 20?2

Here x ranges from -- X to %, and the quantities X, and ¢ are constonfs. First,
we check that this probability density is normolized to unity. Referring to the

table of definite integrals, Table 2.4,

TABLE 2.4 Tobleof Integrals
fm -yz>
exp| —— |dy
_w <2¢72
[~ 0 _y2
2
/ y eXP<—, dy
o« 20
and letting y = x — X, with dx = dy, we find that

«® ® 2
'I j—
[Cews= o [ el =

£

Vixe

it

\V2re?

it

In calculating the rms deviation from the mean of x, we need first to find the

mean. Since the distribution is symmetric about x = x;, it is clear that (x) = Xx;.
If this were not obvious, the average value of x could be calculated by the

equation

|-
&y = j xp (x) dx (2.54)
In the case of the gaussian, this is
1 fu; —(x —x )
Xy = ——— xexp | —————| dx
@ V2re Jo« 242

: f( erp |2 =X
V276 Jow Y 262

= f’n —{x - X1)2 o
—_ exp |—————|dx (2.55)
\/27r 0 Y-« 202

The first integral on the right is zero because the integrand is odd in (x = x,).

‘The second term is Xj. Thus, for a goussian peaked about X;, the average value

of x is just the position of the center of the peak: (x) = Xj.

o e A/ " \2
Let us next calculate the rms deviation from the mean. This is <(X - x1) >,

50 we first need to calculate the expectation value,

® _ _ 2
( xD= | = ) exp] XX gy (256,

V2r o Jox 207
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Again, with the substitution y = x = x,, this reduces to the second integral in
Table 2.4. Therefore,((x = X])2> = 0’2. Hence, the rms deviation from the mean
is equal to ¢. As a characteristic width of the gaUSSion curve, we might take the
distance from x;to the pomt where the curve is half its maximum. This is at
X == X, = \/5 m,‘ = 1.180. Thus we see that the width at holf-maximum

and the rms deviation are about the same.

summary

CALCULATION OF PROBABILITY

The probability of an event is equal to the number of possible ways of getting the
particular result, divided by the total number of ways of getting all possible
results. If A and B are two independent events, the total probability of getting
either the result A or the result B is equal to the sum of the probabilties of getting

A and of getting B separately:
P(either A or B) = P(A) + P(B)

The probabilty of getting both A and B is equal to the product of the probabili-
ties of getting A and of getting B separately:

P(both A and B) = P(A) P(6)

The total probability of getting all possible results in a given situation is unity.
PROBABILITY DISTRIBUTION FUNCTIONS AND DENSITIES’
A probability P(n), which is a function of some discrete variable n, and which

gives the probability of the event chqrqcterized by n, is called a probability
distribution function. The ncrmalization of a probability distribution function is

ZP(n) =1

alln

unity:

A quantity p(x), which is a function of the continuous variable x, such that
p(x) dx is the probability of finding x in the infinitesimal interval dx, is called

a probability density.

p(x) dx =1
all x
If f (n) is a distribution function, then the probability distribution function P(n)
is given by P(n) = f (‘n)/Z‘_N o T (n). If f (x) s a function of the continuous vari-
able x, then likewise, p(x) = f (x)/ ff (x) dx.
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EXPECTATION VALUES

The average value of any quantity g(n) or g(x) is defined as:
2 g(n)f(n)
N = = P
9@ S o) 2_g(n) P(n)
(Jotx) fx) d
(@) - Mo 1) &
J#x)dx

The average value is also called an expectation value, because in repetitions of

= [9(x) plx) dx

the experiment, wher average values are computed, it is to be expected that

their values are equal to the expectation value.

EXPERIMENTAL DEFINITION OF PROBABILITY

If an experiment is performed which is repeated N times, and the event H occurs
a total of ny times, then the experimental definition of the probability of the
event H is
Ny
Jim — = P(H)
N—=x N

The root mean square (rms) deviation of ny from the mean is defined as

Snn -y )2 = VLY < (o D)

\ ("H -- ny ) = ny - Ny
‘The rms deviation from the mean of a measured quantity is a good measure of
the error, or uncertainty, in the measured value of the quantity.

If a measurement is repeated N times, the probable error in the average is

proportional to ]/\/N times the probable error for one measurement.

problems

1. If you draw 4 cards from a standard deck of playing cards, what is the probability
that they are all aces?
Answer: (4 +3:2.1)/(52+51 -50-49)=1/270,725.

2. If you draw 4 cards from a standard deck of playing cards, what is the probability
that none is an ace?
Answer: (48 +47 - 46 -45)/(52 -51 - 50 -49) = 38,916/54,145.

3. |If you draw 4 carcls from a standard deck of playing cords, what is the probability
that exactly one is an ace?
Answer: 4. (48 147 -46-4)/(52-51 -50-49)= 69,184/270,725.

4. A jar contains 3 black balls and 4 white balls. If you draw 1 ball out of the jar,
what is the probability that it will be white?
Answer: 4/7.



Problems

5 A ior contains 4 black balls and 10 white balls. If you draw 2 balls out of the jar,

what is the probability that both will be white?
Answer: (10 x 9)(14 x 13) = 45/91.

6. A blind mon in g cafeteria comes to pick up his siverware, which is stored in deep

7.

9.

10.

11

cans. Two of the cans contain forks. One can contains 1 salad fork, the other con-
tains 99 regular forks and ‘I salad fork. He sticks his hand at random into a can and
picks a fork at random from the forks in the can. What is the probability that he
will pick @ salad fork?

Answer: 0.505.

If the probability of missing the bull’s-eye target shooting is 0.96, how many
bull’s-eyes would you expect to hit in 350 shots?

Answer: 14.

What is the probability that in 10 throws of @ die, @ 2 comes up 5 times?

Answer:  1015%/(51)76'% = 21,875/1,679,616.
What is the probability that in 10 throws of a die, a 2 comes up 5 times and ¢
3 comes up 2 times?

Answer:  1014%/5121316'° = 35/13122.

If g rabbit runs past you and the probability of catching it is 0.05, then what is the
probability of catching at least 2 rabbits if a herd of 160 rabbits runs by one at g
time? What is the probability of catching exactly 2 rabbits?

Answer: 1 ~ (0.95)" - 160(0.95)'" -(0.05) = 0.99743;
1601(0.95)'**(0.05)?/15812! = 0.00961

According to quantum mechanics, g free atom may hove on intrinsic angular momen-
tum Vn(n + 2)k/2 associated with it, where n is an integer and # a constant.
If a particular component |s measured, it can have with equal probabilty n + 1
equally spaced values from — Y nhi to % nh. If there are N such noninteracting
atoms, what is the probability that there are m; with ; components of % nh,
mywith(Y2n ~ 1)k, ..., N — (m + my + <o 4 m,) with — 2 nh?
: | Ny Im,!
Answer:  Nl/(n + 1) myImp! 0 (v = (my + mp + . . .+ myp

12. A crystal is grown by evaporating A and B type atoms, and then letting them

condense to form the crystal. If, because of the forces involved, an A atom is twice
as likely to stick to the crystal os a B atom, what is the probability that the final
crystal will consist of %4 A atoms if there ore 3N total atoms? What is the probability
in terms of N that it wil consist of % B atoms? Find the ratio of these probabilities
it N = 107,
Answer: (3N)122N/33VNI2N) 1 (BN)12M/33NNI2N) 1,

2]022 = 10@ x 1021)

13. Suppose a prism whose cross section is on equilateral triangle has the three faces

forming the triangle marked A, B and C. If the triangle is dropped on g table, it is
equally likely that any of these faces is on the bottom. If it is dropped N times, find
an expression for the probability that the A face is on the bottom n times, B m times,
and C (N - 1 — m) times.

Answer:  NU3NalmI(N -~ n ~ m)

14. If, in the previous problem, the triangular cross section is not equilateral but is such

15.

that in one drop of the prism the probability that side A is down is p and that
side B is down is g, what is the probability of n A’s and m B’s in N trials?

m N-n—
Answer:  Nlp“"q™(1 p —q" " ""nlm(N n-m):
A particle can move along the x axis, and is moved successively by the fixed amount
Ax with equal probability either in the positive or the negative x direction. If

39
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16.

17.

18.

19.

20.

it is moved N times, what is the probability that it is n Ax in the positive x

direction away from where it started? Assume N and n are both even integers.
N+ n | N —n
2/ 2

If in a trial the probabilty of getting result 1 is p and that of getting result 2 is

Answer: N!/2N !

g = 1 = p, show that in N trials the expectation value of the number of times one
gets result 1 is

N-—n

d
x — — = |x — (x + q)N
dx ;"o nY{(N — n)l],_, dx

N n
d Nix"q

x=p

Find this expectation valye. Also find the expectation value of the square of the
number of times one gets result 1.

Answer: Np; sz2 + Npq.

In guantum mechanics, it is found that a harmonic oscillator consistihg of a mass m
and a spring of constant k can have energies of E, = (n + J2}hw, where F is a
constant, @ = \/Wm, and n is an integer or zero. As you will see in the statistical
mechanics chapter, the probability that it has an energy E,, when the Kelvin

temperature is J, is

exp (—Eq/kg T

£y

2 exp(~Ei/kaT)
n=90
where kg is a constant called Boltzmann's constant. The denominator is a geometric

series whose sum is given by

£

Z —E, exp (—Yahw/kyT)
exp = ——

T kg T 1 — exp (hw/kgT)

Show that the expectation value of the energy is given by

x

RERND

X n=0 x=1/kB1

and evaluate it.

Answer:  hw{l + 1/[exp (hw/kgT) = 1]}

Suppose N noninteracting particles are confined in a volume V. What is the \prob-
ability that any one particle will be found inside a volume V’, which is inside V?
What is the probability of finding all N particles in V’?

Answer: V'/V; ‘(V'/V)N-

An unfair coin is tossed 10 times, with p(H) = 0.6. Calculate the rms deviation from
the mean of ny. See Problem 16.

Answer: 1.549.

Suppose N noninteracting particles are confined in a volume V, and all momenta are
equally probable so long as their components lie between px and px + Px, Py
and p,+ P,,and p, and p, + P,. What is the probability that the ith particle lies in
the volume dx’»dyidzi inside V and lies in the momentum range dp,,, dpy,», dp,, inside

the momentum bounds? What is the total probability that these N particles Qre in
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dxy,dyy . dzy, ,dxy, dyy and dzy, and dp,(], ,dp,n? This 6N dimensional
space of coordinates and momenta is called phase space.

dxi dy, dz;dpn, dp,, dp,, dxidy,... dzydp, dp,] .. dp.N

Answer: — ;

VPP, P, (ve,p,p,)"

21. The displacement of a mass executing harmonic motion is given by x = xg cos wt.
The time it spends in dx is d'x/ v In a given half cycle, where vy = xgsin wt
A half period is 7r/w, In terms of dx, t, @, Xp, what is the probability of
finding the mass in dx? This probability can be written as f(x) dx, where f(x)
is the distribution function. Find f(x). Find the expectation value for x and x2<
Answer: dx/ Txgsin wt ! ; f(x) = 1/x \/xg - x2, <x> = 0,
(x’) = % xg.
22. The distribution of weights x in Ib, of a large set of objects is given by the
—10x

’

where 0 < x < %, What is the normaliza-
tion constant C such that Cf(x) is the probability density? What is the average value

distribution function f(x) = e

of the weight x? What is the rms deviation from the mean?
Answer:  10; ]/]0; ]/1()‘

23. If an arrow is dropped on a uniform table, all directions are equally probable. Find
the distribution function f(f)) where the probability that it points in the increment
df is f(%)d%. Find the expectation value of #, and of 02 if # varies between
=T and T,

Answer: 1/(2m); 0 ; 7r2/3.

24. A piece of sand falls in an hourglass a distance h. At the instant it hits, another
piece starts falling, etc. What in terms of the distance y down from the top, is the
probability of finding a piece of sand in the increment dy at the distance y < h?
What is the expectation value of y for a moving piece of sand?

Answer:  dy/2 Vhy; h/3.

25. A fair coin is tossed 360,000 times. Estimate the ratio of the probability that heads
turn up 179,000 times, to the probability that heads turns up 180,000 times (assume
the gaussian distribution).

Answer: 0.00387.
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special theory of
relativity

In this chapter it will be seen that the laws of Newtonian mechanics, when used
to describe objects of very high energies, or traveling at very high speeds, give
predictions which disagree with experiment. The understanding of the funda-
mental reasons for these disagreements and the discovery of the theory of
relativity, which agrees with experiment, are due to Albert Einstein (1879-1 955).
His theory is based on some simple experimental facts and on a careful analysis
of the processes of measurement of length and time.

We shall discuss how length and time measurements are related in frames of
reference which are moving with respect to each other. These relationships are
called the lorentz transformation equations and are basic to the later develop-
ment of the laws of physics, when speeds are comparable to that of liight.
Historically, the primary experiment which helped convince other physicists that
Einstein’s theory was correct was the Michelson-Morley experiment, to be dis-
cussed in Section 3.12. However, we shall first look at some other discrepancies
between the predictions of classical physics and experiment; such discrepancies
also necessitate the introduction of the theory of relativity.

CONFLICT BETWEEN ULTIMATE SPEED AND NEWTON’S LAWS

In  Newtonian or C|GSSiiC(]| mechanics, the basic law which describes the motion of
any particle of mass m under the action of a net applied force F and with ac-
celeration a is Newton’s second law of motion, F = ma. This law agrees with
experiment for most ordinary situations, but it breaks down in extreme situations,
such as for particles going at very high speeds.

Imagine, for example, an electron of mass 9.1 1 X ]0_3] kg acted on by an
electric field of ]06 volts/m over a distance of ten meters. The force is the charge
times the field or 1.6 X 10_13 nt. By Newton’s second law, the acceleration is
F/m = 1.76 X ]0]7 l’n/secz. If the electron starts from rest, the kinematic expres-
sion for the speed v is v = V/2as, where § is the distance the particle has
moved. In this example for s = 10 m, the final speed is v = 1.9 X 1 09 m/se::,

However, it is now a well-known fact, substantiated by multitudes of experi-
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ments with cyclotrons and other accelerating machines, that no particle can be
made to go faster than the speed of light, ¢ = 2.9974 «x 108 m/sec (hereafter
we will use 3 x ]08 m/sec for c). Thus, Newtonian mechanics disagrees with
experiment. The error is either in the second law of motion, or in the kinematics,
or both. However, since the kinematical relation follows directly from the defini-
tions of velocity and acceleration, we would expect that it is the law of motion

which must somehow be modified in order to resolve the discrepancy.

3.2 cLASsICAL MOMENTUM AND ENERGY CONSERVATION—

CONFLICT WITH EXPERIMENT

The laws of conservation of mechanical energy and momentum follow from
Newton’s laws of motion, which were seen to be of suspect validity by the
preceding example. Now we shall apply these classical conservation principles
to the problem of an elastic collision between two bodies of equal mass. Com-
parison of our prediction for high speed experiments will show @ discrepancy,
giving further evidence that the laws of motion must be modified, and that the
definitions of energy and momentum will also have to be modified if we are to
retain our concept of the existence of conserved physical quantities.

For a particle of mass m and velocity v collding elastically with another of the

same mass initially at rest, conservation of energy gives

1 1 2 ] . . -
—mv?i=-mvl+ —mvg ve o= vy + v3 (3.1)
2 2 2
where vy and V3 are the velocities of the two porﬁcles after the collision.
(See Figure 3.1 i Likewise, conservation of momentum gives us
mv = mvy, + mv, o vV = V. + v, (3.2)
Y Y

Before After

Figure 3.1. Collisior of particles with equol rest moss.
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The scalar product of the latter equation with itself leads to

vi= vl 2vyiev, 4 vE (3.3)
Comparison with Equation (3.1) shows that V¥, *V3 is zero. Then, if neither final
velocity is zero, the angle between the final velocities must be ninety degrees.

The photographs in Figures 3.2 and 3.3 show some experimental results. Fig-
ure 3.2 is g multiple flash photograph of two colliding billiard balls of equal
mass. The angle between the paths of the outgoing balls can be measured
directly from the photographs; it is found to be essentially ninety degrees, as
predicted. In Figure 3 a track is shown in a nuclear emulsion of @ collision
between an electron traveling with a speed of nearly 3 X ]08 m/sec, and an
electron initially at rest in the emulsion. We would expect energy to be conserved
in this collision, because conservative forces are involved and little radiation is
emitted during the collision. As in Figure 3.2, the plane of motion is the same
as the plane of the paper. From the photograph, the angle between the outgoing
particles is found to be around 19 degrees, much different from the predi\'cted
ninety degrees. Into the classical prediction went the classical laws of energy
and momentum conservation. Also, since the same mass was used on both sides
of the equations, conservation of mass was assumed. Therefore, one or more of

these classical laws must be incorrect.

CONSERVATION OF MASS-CONFLICT WITH EXPERIMENT

Let us finally look at experiments relating directly to the conservation of mass. In
chemical reactions, such as 2H2 + Oy — 2H20, it is well substantiated from
experiment that the total mass after the reaction occurs is equal to the total
mass before the reaction. This mass conservation law is sometimes called Dalton’s
Law. In such chemical reactions, the forces involved are electrical in nature and
act between particles separated by distances of the order of 10—10 meters. Atomic
nuclei are bound together very tightly by a different, extremely strong force,
called the strong interaction, which acts between particles separated by distances
of the order of ]0_]5 meters. This leads to nuclear interaction energies that
are around a milion times greater than in chemical reactions. For example, sup-

pose a proton and a neutron combine to form a deuteron.
. -27
The mass of a proton is: 1.6724 X 1 0 kg;
The mass of a neutron is: 1.6747 X 1 0"27 kg;
. -27
The sum of the masses is: 3.3471 X 10 kg.

When these particles combine, the mass of the resulting deuteron is 3.3431 X
10_27 kg. This is less than the total original mass, so that mass is not conserved.
Therefore, if the energies of interaction are high enough, significant departures
from the conservation of mass law can be observed.

Of the two other conservation laws known in classical physics-conservation
of angular momenturn and of charge-experiment shows that whereas the first
must be modified for high energy particles,, the charge conservation law remains

generally valid under all circumstances.
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Figure 3.3

Collision with an electron of the
charged particle formed by the (-
decay of a p-meson

The charged particle emitted in the
P-decay of a p-meson makes a colli-
sion with an electron in the emulsion.
The tracks before and after the colli-
sion are long enoug\h to allow the mo-
menta of the particles to be deter-
mined. An analysis of the dynamics of
the collision can therefore be made,
assuming it to be elastic so that no
appreciable energy is emitted in the
form of photons. It may thus be shown
that if track (a) is clue to the recoiling
electron, the mass of the particle pro-
ducing the track (b) is 3 &+ 2me; and if
track (b) is due to QN electron, the mass
of the other particle is | -5 41 . om,.
This observation therefore proves that
the particle produced in the decay of
the p-meson is of small rest-mass and
gives very strong support for the view,
commonly held, that it is an electron.

Although the collision is almost cer-
tainly due to two particles of equal

mass, of which one was originally “at
rest,” the subsequeni directions of mo-
tion of the two particles are not at
right angles, since the velocities are in
the relativistic region.

From The Study of Elementary Particles
by the Photographic Method, Powell,

Fowler and Perkins.
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CORRESPONDENCE  PRINCIPLE

In the next chapter we will develop the generalizations of mechanics, due to
Albert Einstein, that will resolve the difficulties encountered above. The corre-
spondence principle, to be discussed in this section, serves as a useful guide in
finding the generalization of a law that is valid for one range of a variable, but
which hos to be modified for another range of that variable.

Suppose there existed a t’heory of mechanics that gave results in agreement
with experiment for all speeds v < c. The difficulties with Newtonian mechanics
show up mainly when we are dealing with high speeds. Then in the CQOS€ of very
low speed, v << c, the predicted results of this new theory must be identical
to the predicted result of Newton’s laws of motion.

Newton’s laws are so well verified in terrestrial and astronomical eX\periments
that they must be an accurate representation of nature in those cases. About the
highest speed available in such experiments with large objects is the speed of the
planet Mercury, 105 mi/hr or 5 X 10 m/sec. Since this speed is small (;ompqred
to c, we would expect any deviations from the predictions of Newton’s laws of
motion to be very small. However, in modern accelerating machines particles
are accelerated to speeds (approaching the speed of light, ¢, and Newton’s
second law does not apply. The newer theory, the special theory of relativity,
applies to all particles going with any speed up to c.

The correspondence principle states that any new theory which applies to a
broader range of experiments than an old theory, must give the same predicted
results as the old theory in those experiments with which the old theory is in
agreement. The new theory---in our case, the special theory of relativity-must
give the same results as Newton’s laws of motion when applied, for instance, to
problems involving motion of artificial satellites.

Another way of stating the correspondence principle is: Any new theory which
contains an older theory as @ special case must give the same predictions as the
old theory in the special cases to which the old theory applies.

As we will see, special relativity explains why the mass of a deuterc)n might
not equal the sum of the neutron and proton masses. Also in accord with the
correspondence principle, relativity gives Dalton’s law when applied to chemical
reactions. The correspondence principle is also satisfied in the other examples

discussed above.

INERTIAL SYSTEMS

Hoving seen in preceding sections that the Newtonian laws of motion do not
always agree with experiment, we shall now proceed to analyze in more detail
the conditions under which the laws are known to hold. One of the most impor-
tant restrictions, and one which also applies in special relativity, is that the
laws can be valid only in certain frames of reference called inerﬁm' frames.
Consider, for example, Newton’s first law of motion: If the net force O‘Cﬁng on a

body is zero, the body will either remain at rest or will continue to move with
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constant velocity in a straight line. An inertial frame, by definition, is one in which
the first law-the law of inertiao— holds.

To measure the position and velocity of a particle, we need a coordinate
system, set up with clocks and measuring rods (rulers) at rest in it, to observe
the motions of bodies. There are many different coordinate systems we could
choose. For example, we could pick a red‘angulclr Xyz system, as in Figure 3.4,

,

z z

Y 4
7
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7// / /
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Figure 3.4. Two inertial reference frames.

with its Z axis pointing up, and its origin in the middle of some railroad tracks
with the x axis pointing parallel to the rails. Also, let us pick a second coordinate
system with origin fixed in a train going along the tracks with constant veloci\'ty v
relative to the tracks. We call this system the x’y’z’ system, with z' axis up,
and x’ axis parallel to the tracks. A passenger in the train might observe a book
lying on the seat and say that relative to the x’y’z’ system, the book is at rest,
and therefore by Newton’s first law, there must be no force on the book.

On the other hancl, a person standing in the middle of the railroad tracks
might say that the book is traveling with constant velocity v relative to the xyz
system. Therefore, for him also the force is zero by Newton’s first law.

To simplify the discussion, we shall designate the observers by letters, calling
the observer on the trgin G. and the one on the tracks R. G. goes and R. remains.
We shall call their coordinate systems G and R, respectively. G.'s coordinate
system, G, is the x'y’z’ set; R.'s set, R, is the xyz set.

Now according to R., the book is traveling with constant velocity, y. The net
force acting on it is therefore zero, in accordance with Newton’s first law in R.
Likewise, the motion of the book in G,'s system, G, satisfies the first law since the
book is at rest. A system of coordinates in which Newton’s first law of motion is
satisfied is called an inertial system because, when no force acts on it, the inertia
of a body causes it to continue in a state of rest or of motion with constant
velocity. Thus, since the book in G.’s coordinate system is at rest and has no net
force acting on it, the x’y’z’ coordinate system (the G system), would be an
inertial system of coordinates. (At this point, we are neglecting the earth’s

rotation and planetary motion.) Likewise, R.'s system is an inertial system
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3.6 NON-INERTIAL SYSTEMS

Not all coordinate systems are inertial systems. Imagine a rotating coordinate

system (x"'y''z"’) fixed in a merry-go-round, as in Figure 3.5, which is rotating

‘( J———:- —y"

S -7 2
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/ ot
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Figure 3.5. Coordinate system fixed in a merry-go-round which is rotating with angular

velocity ).

with the angular velocity , relative to the ground. The origin of the coordinate
system is on the axis of rotation. A ticket stub lying on the ground a distance d
from the axis of rotation will have x” and y” coordinates, x” = d cos wt,
Y” = d sin wl. The equation of the path of the stub in x”y” coordinates,
that is, as seen by an observer fixed to the merry-go-round, is thus (:x”)2 +
(y”)2 = d2, the equation of @ circle. The net force acting on the ticket stub
from all physical causes such os gravity and contact with the grouncl is zero.

The path of the stub in the x''y"’

coordinates is a circle. Therefore, the first
law of motion is invalid in this rotating coordinate system, and it is not an inertial
system.

The earth we live on rotates approximately once per day relative to the sun. A
coordinate system fixed relcﬁ‘ive to the eorth also rotctes once a day. Then the
sun undergoes circular moticn relative to such a coordinate system fixed in the
earth. (See Figure 3.6.) We conclude that this coordinate system fixed in the earth
is, therefore, not an inertial system. We have defined an inertial system as a sys-
tem of coordinates in which the first law of motion holds. Clearly, if an observer
is accelerating, the first law will not hold because an object not acted on by
forces will appear to accelerate. Thus, a coordinate system fixed on the surface
of the earth is not exactly an inertial system, both because of the ceerlfripefcﬂ
acceleration that bodies have on the earth’s surface and because it is a rotating
coordinate system.

The magnitude of the centripetol acceleration of a man on the equafor is

w?r = (2m/864C0 sec per revolution)?(about 4000 miles)

= 2.1 x 10 O mifsec =0.11 ft/sec’

The acceleration of a car which speeds up from rest {0 15 mi/hr in 60 seconds
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Figure 3.6. A coordinate system fixed on the surface of the earth is a non-inertial system.

is6.9 x1073 mi/secz‘. which is of the same order of magnitude as the centripetal
acceleration at the equator. Suppose a coordinate system were fixed in a car
which is accelerating, and that a passenger in the car is observing a 'tickei
stub lying on the road. Then the net force on the stub from all physical causes is
zero. As seen from the car’s coordinate system, however, the stub is accelerating.
Therefore, the qccelerming system is not an inertial system, since Newton’s, first
law does not hold; similarly, the man on the equator is not in an inertial

reference frame.

3.7 AXES RELATIVE TO FIXED STARS

Suppose that instead of axes fixed in the earth, we choose a set of axes with
center at the center of the earth, but with the x axis pointing along the direc-
tion of orbital motion and the y axis pointing toward the sun. This is still not an
inertial system, because the coordinate system will rotate once a year; also, the
earth has a small centripetal occe|erqﬁo\n toward the sun. We can go a step
further and take a c¢oordinate system with origin at the sun’s center, one axis
normal to the plane of our galaxy and another along the line from the center
of the sun to the center of the galaxy. This is again not an inertial system,
because the sun orbits around the galactic center. However, this is close enough
for most purposes, as seen in Table 3.1, because the acceleration of the sun
toward the galactic center is very small compared to ordinary accelerations
we measure on earth. From here on, we shall assume that, to a good approxi-
mation, a coordinate system with origin fixed at the center of the sun and axes
pointing toward “fixed” stars is an inertial system of coordinates, because it
has negligible acceleration and negligible rate of rotation. Then the path of a
free particle (no forces acting on it) relative to this system will, to a high

degree of approximation, appear to be a straight line.
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3.8 Galilean transformations

TABLE 3.1 Accelerations of Origins of Possible Reference Frames

acceleration  of towards a = v2/r

) -5 . 2
point on equator center of earth 2.1 x 10 ml/sec
center of earth sun 1.5 x ]0'6 mi/se.:2
sun center of galaxy 1.5 x10° " mi/sec2

GALILEAN TRANSFORMATIONS

Suppose R. is at rest relative ta the inertial system with origin in the sun, and
consider G., in the x’y’z’ system, moving with same constant velocity v relative

ta R. Let’s choose x and x' axes parallel ta v, as shown in Figure 3.7. The

/

Figure 3.7. R and G inertial frames. G moves with velocity v relative tg R.

’

X X

motion of a free particle looks like straight line, constant velocity motion, ta G. as
well as ta R., so the systems of bath G. and R. are inertial systems. We shall
exumine this in mare detail, Ih order ta find transformation relations between the
two coordinate systems. Suppose that at a certain instant t, as measured by R.,
the free particle is at the point (x,y,z). As measured by clocks in G.s system,
the time is ' when this observation is made. If in G and R there are clacks
which beat seconds and which are set ta f = t* = 0 at the instant the origins in

G and R pass each other, the Newtonian assumption of absolute time gives
t o=t (3.4)

We will later see that this equation, which seemed %0 obvious ta Newton and
to generations of physicists ﬂ'\erecffer, is not valid in special relativity.

After time t, referring ta Figure 3.8, the origins are separated by @ distance
equal ta vt, since G. travels with speed v relative ta R. Thus, the position x’ of

the particle at the instant t” = t, as measured by G., can be expressed Q%

x = x = vt (3.5)

Also, if the y’ axis is chosen parallel to y, and z’ is parallel ta z, we have,

at the same instant ' = t, the fallowing relations between G.'s and R.'s measure-
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Figure 3.8. Separation between origins at time tis vf.

ments of the particle’s position:

y’ = Y, i!, = Z (36)
Of course, R. and G. must each use measuring rods at rest in their respective
coordinate systems. The four equations, Equations (3.4), (3.5), and (3.6), are
called the Galilean transformation equations. The equation t' = t was, in New-
tonian mechanics, simply taken to be self-evident; other intuitive assumptions
went into the other equations, such as the assumption that all lengths appear the
same in the two coordinate systems. It will be seen that, when the relative speed
of G and R becomes large, these assumptions are erroneous, indicating that

intuition can't always be frusted. . J ] |

GALILEAN VELOCITY’ TRANSFORMATIONS

Next, let us find the relation between the particle velocities, as measured in
the two coordinate systems, using the Galilean transformations. The x compo-
nents of velocity in the two systems, R and G, are dx/df and dx'/dt’, respectively.
However, since if time is (absolute dt and dt’ are equal, we don’t have to dis-
tinguish between them. Differentiation of Equation (3.5) with respect to t, remem-

bering that v is constant, results in

xX'=x%x —v (3.7)
where the dots mean time derivatives. Similarly, Equations (3.5) lead to
y o=y 3 =z (3.8)

The result states that if R. observes a particle going with constant velocity, and
G. is moving with constant velocity relative to R., then G. will observe the particle
moving with constant velocity. Hence, if R. i§ in an inertial system, so is G.

Hence, all inertial frames are completely equivalent as far as the statement of
the first law of motion is concerned; if the first law is valid in one inertial frame, it
is valid in every other inerfial frame.

This result is a first indication of the significance of this discussion of inertial

frames. The similarity of the statements of the first law of motion in various in-
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ertial frames means that there is no way to pick and choose among the infinity of
inertial frames (using the first law), in the hope that by judicious choice the ex-
pression of the law might be made simpler. One inertial frame is as good as
another. One may draw the analogy of attempting to pick a better origin for
coordinates for the expression of the rules of plane analytic geometry-actually,
one origin is as good as another.

It will be seen below that this equivalence property of the law of inertia is
also satisfied by the other laws of motion. Hence no mechanical law can be used
to draw essential distinctions between inertial frames. Nevertheless, Newton and
many other physicisfs of the eighteenth and nineteenth centuries maintained a
belief in the existence of an absolute space and an absolute time. “Absolute
space” referred to space coordinates measured with respect to one preferred
inertial frame, which was supposed to be absolutely at rest. Absolute time flowed
uniformly, independent of the motion of the observer with respect to absolute
space, and the belief in the existence of absolute time was the origin of the

assumption in Equation (3.4).

SECOND LAW OF MOTION UNDER GALILEAN TRANSFORMATIONS

Llet us look at the expression of the second law of motion in the two r‘eloﬁvely
moving coordinate systems, R and G. We shall put primes on all quantities such
as F', m’, @', to denote quantities measured by G. We shall ask how the
quantities F’, m’, a’, for general motion of a particle, are relatedl to the
corresponding physical quantities F, m, a, measured by R. In Newtonian me-
chanics, it is always assumed that all observers will measure a particle to have
the same mass, i.e. mass is an absolute quantity. Sc¢ for a given particle, if
m’ is the particle’s moss os measured in G, and m is its mass as measured in
R, then m’ = m, Similarly, forces ore absolutes, and are assumed to be the
same in two inertial systems. For example, a book weighs the same on @ scale
on the ground as on a scale in a car moving at constant velocity. Then F’ = F.
By using Equations (3.7) and (3.8), we can find a relationship between the two
accelerations a’ and a. Differentiating these equations with respect to time (f
or t'), we find that

a' = a, a,= qa, a = «, (3.9)
Thus, the accelerations ore the same in the two inertial systems.

We see that the three quantties in F = ma, the second law, are equal to the

‘corresponding quantities F’, m’, a’ in the other inertial frame. It follows that

F’ = m’a’. In Newtonian mechanics, the second law of motion has the same form
in all inertial frames; this low,. therefore, cannot be used to pick out some pre-

ferred inertial frame in which the law would be different.

|1 THIRD LAw UNDER GALILEAN TRANSFORMATIONS

Finally, the third law, the law of action and reaction, is the same in various

inertial systems; in other words, the low is form-invariant under Galileon trans-
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formations. We can see this because if particles A and B interact in the R system,
the third law gives F[A on B) = ‘F(B onAy. But for any force, F = F. So this equation
is the same as F'(AonB) = —F’(BonA), which jg the third law for the same interaction
in system G. Hence, all the Newtonian laws of motion are form-invariant under
Galilean transformations. Therefore, there is no hope of finding one preferred
inertial system, in which the laws of mechanics take a simpler mathematical ﬁform,

and which we could scy is absolutely at rest.

MICHELSON-MORLIE'Y EXPERIMENT

In spite of the fact that all classical mechanical laws are form-invariant under
Galilean transformations, Newton’s philosophical beliefs led him to assert that
there existed a preferred inertial frame, at rest in absolute space.

Later on in the nineteenth century, people came to believe that light waves
were supported by a medium called the “ether,” which was at rest in absolute
space. Relative to the ether, light was supposed to propagate at the speed ¢;
hence, by the Galilean velocity transformation, Equation (3.7), observers in
motion with respect to the ether should be able to observe light rays propcgming
at various speeds, depending on the direction of propagation and on the motion
of the observer with respect to the ether. The apparent variation in the speed of
propagation of light would mean, in other words, that the laws describing light
waves are not form-invariant under Galilean transformations. Hence, detection
of the motion of an observer with respect to the absolute rest frame, or with
respect to the ether, by means of experiments with light, appeared at first to
be feasible.

A very accurate experiment designed to detect the absolute motion of the

earth was performed by Michelson and Morley in 1881. This was an experiment

TABLE 3.2 Trials of the Michelson-Morley Experiment
Ratio of expected
Observer Year Place to observed time
differences
Michelson 1881 Potsdam 2
Michelson & Morley 1887 Cleveland 40
Morley & Miller 1902-04 Cleveland 80
Miller 1921 Mt. Wilson 15
Miller 1923-24 Cleveland 40
Miller (sunlight) 1924 Cleveland 80
Tomaschek (starlight) 1924 Heidelberg 15
Miller 1925-26 Mt. Wilson 13
Kennedy 1926 Pasadena & 35
Mt. Wilson

Illingworth 1927 Pasadena 175
Piccard & Stahel 1927 Mt. Rigi 20
Michelson et al. 1929 Mt. Wilson 90
Joos 1930 Jena 375
Townes, Javan, 1962 long Island 1000

Murray, Jaseja
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in which light was sent along two0 arms of an interferometer, of equal length’s,
placed parallel and perpendicular to the direction of the earth’s orbital velocity.
The difference in light speed, or travel time differences, along these two arms
could be measured with precision great enough to detect the earth’s orbital
velocity, 30 km/sec. When the experiment was first performed, physicists were
surprised to learn that the time difference was zero—).e, the experiment gave a
null result. This means that, to within the accuracy of the experiment, the light
speed is independent of direction and hence-which is not reasonable--that the
‘earth seemed to be at rest in absolute space. This experiment has been per-
formed many times since 1881 with greatly increased accuracy, always with a
null result. Some of these results are given in Table 3.2. Many other extremely
accurate experiments involving moving charges, moving telescopes, interfer-
ometers with unequal arms, etc., performed to detect the earth’s motion have

given null results.

IPOSTULATES OF RELATIVITY

Al of the efforts to detect the absolute motion of the earth by optical experiments
have failed in spite of the Iorge magnitude of the expected effect. This tends to
\indi(:a're that absolute motion is simply not detectable by means of optical ex-
periments. We have also seen that no preferred inertial system can be detected
\by means of Newtonian mechanics. Einstein concluded from this that it must be a
‘fundamemal fact of nature that there is no experiment of any kind, performed
in an inertial system, by means of which it is possible to detect absolute motion
or to select a preferred inertial system.

A deeper analysis of the relations between the inertial systems G and R is
necessary. If there is nd way of detecting a preferred frame of reference, we can
never say that, of two observers, G. and R., who are moving relatively to each
other in inertial frames, one is at rest absolutely. Only relative motion is ob-
servable. (See Figure 3.9.) Thus, R. can say, “G. is moving with velocity y relative
to me,” but not, “| am at rest in absolute space and G. is moving.” If G. is in an

’

r4 P

R G

0 0’
v
—

Figure 3.9. Reference frame G moves with velocity v along the positive x,x* direction
with respect to R.
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inertial system, the experiments he performs using apparatus at rest in that
system would be desc:ribe:d by some set of equations which express physical laws.
If R. performed identical experiments using apparatus at rest in his inertial frame,
these experiments would be described by physical laws in R which would be the
same in form as the physical laws in G. So, in principle, there is no difference in
the form of the equai‘ions, which express physical laws discovered by G. and those
discovered by R. This is one of the basic assumptions of the theory of relativity,
called the principle of relativity, and may be stated as follows: All the laws of
physics are the same in all inertial frames. This principle is a general statement
which restricts the possible physical laws to those having the property of form-
invariance with respect to transformations. between inertial systems. Although it
is consistent with the results of mechanical and optical experiments, it is not true
that all conceivable experiments have already been performed, or that all
physical laws have been discovered. Hence the principle has very broad impli-
cations.

Measurements at the (earth’s surface show that light propagates in a vacuum
with speed ¢ 2~ 3 X ]08 m/sec, independent of direction. If R. measures the
speed of a light wave in vacuum, it will be c. If the laws describing light waves
are valid laws of physic:s, and if G. measures the speed of some light wave, it
should be c. Both would measure the speed to be c even if it were the same light
wave whose speed they were measuring. This very important principle was taken
by Einstein as the second fundamental assumption of his theory: In vacuum the
speed of light, c, is a constant, irespective of the state of motion of the source.

Thus, if G., traveling at velocity ¥V relative to R., shines his flashlight in the +x’
direction, it follows that he will observe a light wave that travels with speed c.

R. will observe the same wa@ve traveling with the same speed c. (See Figure 13.10.)

Figure 3.10. Both G, and R. see light from the flashlight moving with the same speed ¢
relative to themselves.
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This contradicts the Galilean velocity transformations, Equations (3.4), (3.5) and
(3,6), which tell us that the speed of light wave sent out by G. as observed by R,
is ¢ 4+ v. Therefore, if the postulate of the constancy of the speed of light is
correct, as indicated by experiment, the Galilean transformations must be in-
correct. Since the Galilean transformations depend solely on distance ond time
measurements, and since a speed is a distance divided by a time, somehow the
distance and time measurements must be modified in relativity so that the speed
of light remains a universal constant.

Summarizing, Einstein was led to base a new theory on two postulates. These

are:

|. The principle of relativity:
No inertial system is preferred. The equations expressing the laws of physics
have the same form in call inertial systems.

Il. The principle of the constancy of the speed of light:
The speed of light, ¢, is a universal constant independent of the state of

motion of the source.

14 EXPERIMENTAL EVIDENCE FOR THE SECOND POSTULATE

Most of the experiments performed to test the predictions of relativity theory
largely confirmed the first pos.fulofe but did not test the second postulate directly.
We shall now describe an experiment which was performed to test the volidity of
the second postulate, that the speed of light is a constant independent of the
motion of the light source.

Suppose R. has a light source at rest in his lab and he measures the speed of

oo

Earth

Figure 3.11. Light emitted from positons A and B on the sun’s equator COMes from
sources moving with different velecities relative to the earth.
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light using apparatus at rest in his lab. He finds the speed to be c. Then, if G. is
moving toward R.’s light source with speed v, the light's speed in G wou|c| be c
if the second postulate is correct, but ¢ + v if the Galilean transformations are
correct. If G. is moving away from R.’s |ilgh1 source, with speed v, the Galilean
transformations imply that the light’s speed in G would be ¢ v. The difference
between these two observed speeds would be 2v.

Imagine that R. is siiﬁil‘lg in a lab at rest on the sun’s equator, as in Figure 3.1 1.
The sun rotates about @On axis which is nearly normal to the line of sight of G.,
who is supposed to be on the earth. The sun has a radius of 695,000 km and
rotates with angular velocity 2.9 x 10°° rad/sec. The speed with which a point A
or B (see Figure 3.1 1) at the edge of the visible equator moves either toward or
away from the earth is v = or = 2 km/sec = 2000 m/sec. Hence, if G. mea-
sures the speed of Iight, (emitted by a source at rest relative to R, for both points
A and B, he should see a difference of 4000 m/sec if the Galilean transforma-
tions are correct and o difference if the second postulate is correct.

When the experiment was actually performed by the Russian physicist Bonch-
Bruevich, the speed difference was observed to be 63 = 230 m/sec, where the
figure +230 m/sec indicates the size of the probable error in the measurements.
This experiment is in far better agreement with the principle of the constancy of
the speed of light than with the Galilean transformations. Bench-Bruevich calcu-
lated that, given the rasult 63 % 230 m/sec and the predicted result of the Gali-
lean transformation of 4000 m/sec, the chance that the Galilean transformation

could be right is 1 in ]OA‘S, A reproduction of that paper is given on the following

page.

GALILEAN TRANSFORMATIONS AND THE PRINCIPLE
OF RELATIVITY

The Galilean Transformations connecting the measurements of G. with those of

R. may be written as:

!
x = X = vf Yy = v

F o=t z' =z (3.10)
These transformations are completely consistent with the principle of relativity
(Postulate 1) taken by itself. This may be seen by solving for x, y, z, fin terms of

X, y, 7t

Y’

t = z = 7' (3.11)
Examining the last four equations, it is seen that they are of the same form ¢§ the
first four except for the sign of the relative velocity and the interchange of primed
and unprimed variabkles. This formal difference in the two sets of transformations,

which occurs in the sign of the relative velocity, is one manifestation of the
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A DIRECT EXPERIMENTAL CONFIRMATION OF THE SECOND POSTULATE OF THE
SPECIAL THEORY OF RELATIVITY

(in connection with Dingle's note)

A. M. Bonch-Bruevich

Received 18 February 1960

It is well known that the Special Theory
of Relativity is based on the postulate of
the relativity of motion and the postulate
that the velocity of lizhtis constant. |
The first postulate is 3 direct congequence
of the negative results of repeated attempts
to detect a privileged coordinate system in
observing optical and electrical pheonomena,
Experiments for this purpose, repeated over
several decades after the formulation of
the Special Theory of Relativitv, have
confirmed the first postulate with increas-
ing accuracy.2'5 The second postulate of
the Theory was not based on direct exper-
imental results, and in the decaces that
followed it was not confirmed directly
because of the great difficultiec encoun-
tered in setting up the appropriate
experiments.

The Special Theory of Relativity no
longer needs any additional support. None
the less, as Academician§,1. Vsvilov
pointed out more than ten years ago, a
direct experiment showiag that the velocity
of light is independent of the wvelocity of
the sourceof radiation relative to the
observer is important, due to t he basic
significance of this postulate. Dingle
published a note on thig recent ly. 1t
appears from this note that the author is
not acquainted with the result:; of the
experiment to confirm the second postulate
directly, carried out in 1955. 7-9

In this experiment, a Comparison was made
of the times tl and t,requirec for light
emitted by two moving sources to traverse
a distance L = 2000 meters. The sun's
equatorial edges were used as SOUYces.
Switching from the radiation of the sun’s
eastern edge to that of its western edge
corresponds to changing the velocity of the
source of radiation by 3.9 km/s(gc in the
plane of the ecliptic. We usec a phase
method to show to the required accuracy that
under these conditions :he transit time over
the hase L remains constant, Theintensity
of the light radiated along the base by the
left or right equatorial edges of fthe sun
was modulated at a frequency of about
12 Mc/s. The phasemeter of a high resol-
ving-power fluorometer was then used to
measure the phase shift Ay of the modulation
of the light trawling along the base when
the transition was made from grne edge of the
sun to the other.10

From Optics 6 Spectroscopy, 9. 73 (1960).

A stalistical analysis of the results
of more than 1700 measurements of At =
t2 = tl showed that in Qur experiment
the change in the transit time over the
base L of the light emitted by the left
and right equatorial edgé s of the sun
was At = (1.415,7) ¥ 10712 sec.

We note that if the clgggical law of
compounding velocities were valid, the
quantity At for our apgau:‘atus would have
had the value 75 X 10~ 2 sec, whichlies
far outside the limits of experimental
error. In addition, the value At = 0
lies inside these

As was shown,” these experimental
results can be statistically analyzed
along different lines, apd used to com-
pare the probabilities that the classical
or relativistic laws of compounding
velocities are valid. This showsthat
the probability that the velocity of
light ig independent of the velocity of
motion of tie source exceeds by 1045
times the probability that the classical
law of compounding velocities is valid.

The experimental results appear con-
vincing to us, and it seems of little
importance to repeat them in another
variation at present (for instance’
using excited atoms or 10ns as a moving
source of radiation)

limits.
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principle that neither of the inertial systems is preferred. Hence the correct trans-
formation laws in relativity must have a similar property; it is mainly the con-
stancy of the speed of light which brings about mqior changes in the form of

the transformations.

3.16 TRANSFORMATION OF LENGTHS PERPENDICULAR TO THE
RELATIVE VELOCITY

We shall now begin the ‘derivation of the correct transformation laws which will
replace the Galilean transformations. These new transformations will have to be
valid for all physical values of the relative velocity v. Experimentally, the largest
possible magnitude of the relative velocity of two physical objects is c. When
the relative velocity v is such that v << c, Ihowever, the correspondence principle
requires that the more general transformations reduce to the Galilean trans-
formations. To find the modified transformations, we will consider several
thought experiments.

We first consider the rneosurement of distances oriented perpendicular to the
direction of relative velocify between the ftwo frames, that is, along the y or 2z
directions. To find G.'s coordinate y/ in terms of the unprimed coordinates
measured by R., suppose that G. and R. each have meter sticks which, when at
rest relative to each other, are identical. Then lay one meter stick with midpoint
on each of the z and z’ axes, and arrange the two sticks parallel to the vy, y' axes
as in Figure 3.12. Imagine that G. and R. drive nails into the sticks at the ends to
provide definite markers for the end points, and that then G. moves past R. with
some large constant velocity v along the x axis. If the nails in G,'s stick pass be-
tween the nails in R.'s stick, we would have to say that G.'s meter stick was con-

tracted due to its motion. Because R. is moving with speed v relative to G., then

G R

X, X

Figure 3.12. Thought esxperiment showing lengths oriented perpendicular to the direc-
tion oi relative motion ore unchanged by motion.
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by the principle of relativity, R.'s nails must also pass between G.'s nails. How-
ever, it is not consistent to say that G,'s nails pass between R.'s, and R,’s pass
between G,’s; the only way this can be consistent is if the nails hit each other.

This would tell us, in general, that the transformation between y and y’ is:

Y =Y (3.12)
A similar argument results in:

z' =z (3.13)
So no matter what the relative velocity is, as long as it is nomal to the y' and 3’
axes, we must still have y’ = y and z' = 2, just as in the Galilean transforma-
tions. However, we still have to obtain x” and t’ in terms of x and f, which is a

less straightforward process.

TIME DILATION

Let us consider another thought experiment to see how time intervals qnd lengths
oriented along the x axis vary from one inertial frame to another. Sup‘pose G.

puts a mirror a distance L’ out along his z’ axis at M’ in Figure 3.13, and qr-

z z
k G
vl _.).H,,:L.Mf
P
=1 I
x, x’
Vg

Figure 3.13. Thought experiment as seen by G.; light travels from 0’ to the stationary
mirror M’ and back.

ranges it so that a light ray which passes from his origin 0° to M will be re-
flected right back to 0’. The principle of the constancy of the speed of light
means that G. will find that the light ray travels with speed c. The time it takes

to go from 0’ to M’ and back to 0’ is then

At = = (3.14)

Next we consider the same light ray from R.'s poin'l‘ of view, and calculate the
time interval At for the light ray to go from 0 to M’ and come back to the
origin 0’. We assume here that 0 and 0’ coincide when the light ray is first
emitted. In Figure 3.14, the dashed rectangle represents the position of the mirror
at the time the ray strikes it. Since zZ = z and z' = I' for the mirror, R. wil ob-

serve that the mirror is out in the z directon a distance L = I’ Let’s call the time

61
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0 X -~ o’
\ /
Equal lengths

Figure 3.14. Thought experiment as seen by R.; light travels obliquely from 0 to the
moving mirror M’ and bcck to 0.

at which R. observes that the ray strikes the mirror At,,. The x coordinate of this
event, “ray strikes mirror,” if G. moves with velocity v, will be (V)(Afgo). In the
triangle OMX in the figure, the hypotenuse OM is therefore of length (L'2 +
[VAfgo]z)%. Since the speed of light relative to R. is c, the time it takes for light to
go from 0 to M’ wil be given by

U.’z + [!Afgo]'z)\/z

Atp = (3.15)
¢
When this equation is solved for At, , the result is
L'/e
Aty = S (3.16)

@ - vic)?

It takes as much time for the ray to come from M’ back to 0°, as to go from 0 to

M’. Therefore, the total time, At, for the ray to go from 0 to M to 0’ is 2Afgo, or
YR
(2L'fc)

At = V77
(1 —VQ/CQ)]/Q

(3.17)

We have thus analyzed an event-the collision of the light ray with O’—-from

two different points of view. G. says that for this event,

x' =0 and At = 2L (3.18)
C
R. says that for this event,
(2vl'/e)
X = VA' = ——‘2—2—]/2 (319)
@ =vjcH
and
r!L//
At = 2L/o) (3.20)

@ = vijch”

There are several things WE can do with this information. For example, the ratio

of At to At’ can be obtained. Division of the equation for At by that for At’
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gives At/At = (1 - vz/cz)“l/;!, or
'
PR — (3.21)
(1 _Vz/cz)l/z
That is, the observers obtain different times for the occurrence of the event.

To give a numerical example, if v = 4¢/5, 1 -- vi/e? = 9/25 and At =
Af’/(q/zf;)”2 = (%)Ai'. So if G.'s clock, at 0’, reads 3 seC elapsed time, then a
clock at rest in R.'s system, which is at the position of 0' when the ray strikes it,
will have beat 5 seconds.

Hence the “moving” clock, G.'s clock, beats more slowly than R.'s clocks. In
this experiment G.'s clock at O' was the only clock he used in making the mea-
surements. However, R. ysed one clock at his origin to mark the time the ray
went out, and one clock at the final position to mark the time of arrival of the
ray back at 0. These two clocks in R.s system cannot be the same clock because
we assumed in the thought experiment that all R.'s clocks remain at rest in R.
R., therefore, used at least two clocks. We may conclude that for the spee'd of
light to have the same value for all observers, it must be true that clocks moving
relative to a system beat slower than clocks at rest in the system. However, the
observer at rest must use at least two clocks to see the effect, while the moving
observer carries one clock along with him. This effect is called time dilation.

In this experiment,, the clock carried by the “moving” observer, G., appears
to beat more slowly than the two clocks in the “rest” system, that of R. If we
analyze a similar experimem from the point of view of G., in which we regard
G.'s system as the rest system, then by the principle of relativity we must find
that a single clock carried along by R. will beat slower than G.'s clocks. In this
latter experiment, by the prin(:ip|e of relativity,

Ave = AN/ } (3.22)

just the opposite of Equation (32’21)'.“Thi§u shows that the student should not
attempt to learn the equations of relativity in terms of primed and unprimed
variables, but in terms of the physical interpretation of the equations; confusion
regarding the sense of the various contraction and dilation effects is then less

likely to result.

mple Suppose someone your own age gets in a rocket ship and moves past you with a
speed v such that (1 vz/(7)]/2 = h Suppose that in 10 seconds, by his own
reckoning, he counts that his heart beats 10 times. You would observe that in ten
seconds, by your own reckoning, his clocks have recorded less than ten seconds,
or (Vz )( 10) = 5 se¢, so you would observe that his heart beats only % times. If
he goes to Mars and returns, he will then be younger than you when he gets
back.

This time dilotion effect has been observed in experiments in which the average

lifetimes of high speed particles called p-mesons are measured. @-mesons at rest
-6

decay into electrons after (i average lifetime of 2.2 x 10 sec. This decay

can be thought of as an internal clock in the meson. When the mesons are moving
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rapidly, it appears to us that the internal clock beats slower, so the meson’s
average lifetime appears to be longer. Table 3.3 gives some experimentally
observed lifetimes, together with correspownding values calculated from Equa-
tion (3.21) for differing values of v/c. The measurements were obtained by B.
Rossi and D. B. Hall, who counted the number of cosmic ray M mesons at different
heights above the earth’s surface. Since the u's are produced by high energy
cosmic ray particles striking the earth’s outer atmosphere, the number of p's
counted at a given heeighf was a measure of the number of p,'s surviving after
being created in the primary collisions. From these measurements, along with
independent measurernents of speeds of the p's, the lifetimes as a function of

speed could be found.

TABLE 3.3 pu-Meson Lifetimes As @ Function of Speed

v/e _ Taverage (obs.) Taverage (calc.)
0.9739 10.6 + 3.5 usec 9.3 usec
0.9853 13.3 + 5.8 usec 13.0 usec
0.990 15.6 + 5.8 usec 15.7 usec

LENGTH CONTRACTION

The results of the thought experiment, from which we obtained the time dilation
effect, can also be used to derive a length contraction effect for rods oriented
parallel to the relative velocity. Suppose R. has a measuring rod along his x axis,
on which he makes a scratch at his origin 0 and another scratch at the point
ivhere the light ray hits 0’ after reflection from the moving mirror. Let us call
the distance between scratches in R.'s system Ax. Since AXx is the distance be-

tween 0 and 0’ after the time At, during which G. is moving away with speed v,
AX = vAt (3.23)

Now the distance, AX', measured by G. between the scratches is a distance be-
tween scratches on a rod which is moving with speed v relative to him. It is also
the distance between () and 0’, measured after the time, At’, when the light
after going from 0’ fo M’ arrives back at 0’. Then the distance between

scratches is, for G.,

Ax' = vAt (3.24)
Division of the expression for AX' by that for AX leads to
Ax' At
_— 3.25
AX At (3:25)
Hut from the time dilation ‘equation, Equation (3,2])[
Af’ V2 1/2
_— =1 - — 3.26
At o (2.26)
Therefore,
v2\l/2
Ax' = 1 =51 Ax (3.27)
cy



3. 19 Lorentz transformations

Here Ax is the length of gn object measured in a system in which the object is
at rest. The object is moving with speed v relative to the G system in which the
corresponding Iength Ax’ is measured. Thus, if an object is moving relative to
the observer with velocity v, it appears contracted in the dimension parallel to
v by the factor, (1 = VZ/CQ)I/Z, Since y = y' and z = z', the object |§ not
changed in size in directions perpendicular to v. For example, if V/C = 4/5,
Ax' = (3/5) Ax. This result says that a stick of any length Ax at rest relo\tive
to R., when measurec by G., appears to be shorter. This effect, in whi(;h moving
rods appear contracted in the direction of motion, is a necessary consequence of
the assumption that the speed of light has the same value for all observers.

Suppose G. and R. both have meter sticks parallel to the x and x' axes. To
R., the length of G,'s stick appears to be less than a meter. Also to G, R.'s stick is
less than a meter |on\g. How can each measure the other's stick to be shorter?
The reason is that to measure a moving length one must find the positions of the
two ends simultaneously, and then measure the distance between these posi-
tions. The two observers simply disagree about what measurements are simul-
taneous, as we shall see. It should be noted that if the physical situation is re-
versed so that the length is at rest relative to G., Equation (3.27) would become
Ax = 1 - v2/c7)l/2 Ax'. So, as in the case of time dilation, one should not
learn the equation in terms of where the prime goes but jn terms of the physical

situation corresponding to the given equation.

LORENTZ TRANSFORMATIONS

With the information gainecl from these thought experiments, we can now find
the Lorentz transformations which give the relativistic relations between cocrdi-
notes of events, observed frorn different inertial frames. Two of the nequqfions
are unchanged: y' =y and z' = z. We will assume in our transformations
that += 1" = 0 when the origins 0 and 0’ coincide. This can be done by simply
setting the clocks to zero at that instant.

Suppose an object at P’ in figure 3.15 is at rest relative to G. The disfcmce
x in the figure is the x coordinate of P’ relative to R; it is the distance
measured parallel to the x axis, from x = 0 to P'. As measured by R.. the dis-
tance from 0 to P is Ax = x = vt. To G. the distance O'P’ s simply
x' = Ax'. Also, we note that Ax' is a distance between points at rest in the
moving system G. Thus Ax is less than Ax’ by the factor (1 — Vz/(rz)l/z. We
then have Ax’ = Ax/(] v2/c2)m. But as we found above, Ax' = x' and
Ax = x = vt. Therefore, we obtain the following transformation equation relat-
ing x'to x and t:

X = (x W) (3.28)

1/2

(1 =v¥/chY
This applies if P’ is any point whatever. Hence, if some event occurs relative to
R at position x and at time f, then substitution of x and { into this transformation
equation gives the value of )(' at which G. observes the event. Equation (3.28)

is the same as the ‘corresponding Galilean equation, except for the factor

65
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r4 4
v
——--
—x i |
e p
vt Ax ]I
5 Y X, X
Py @g

Figure 3.15. x coordinate of on object at rest in G and observed by R.

(1 - v2/c2)m, As v/c approaches zero, this factor approaches one. Therefore,
the correspondence principle is satisfied.

The principle of reloﬁviify implies that the equation giving x in terms of x’ and
f is of the same form as the transformation equation, Equation (3,28), but with

the sign of v reversed. Hence, in terms of x’ and t', we must have

X = —————px v (3.29)

(1 =vieh
Finally, we want to find the transformation equation which gives the tirne t'
in terms of measurements made by the observer R. To do this, we use the expres-
sion for x’ of Equation (3.28) to eliminate X in Equation (3.29). The resulting
equation is
1 1
(1 v2/c2)l/2 (1 - V2/c2)1/2

(x =vh)+ vt (3.30)

X =

On solving this last equation for t', we find that

’ 1 vX
t = —m [} = — (3.31)
a - v2/c2)m< cz)

This is the desired relationship giving t’ in terms of t and x. Likewise from the

principle of relativity, expressing f in terms of t' and x, we must have

t = (3.32)

S (/r’ 4 X
(- v2/c2)]/2\ 2
For v << c, the two equations, (3.31) and (3.32), both reduce to t'= t. There-
fore, the correspondence principle is satisfied.

These equations were found using the length contraction equation. They also
agree with the time dilation formula. We con see this by supposing that a single

clock is at rest in the rnoving system G at x’ = 0. The equation
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! o+ ﬂ_,
f = (]--—vz/cz)]/(f C2 > (3-33)

becomes, for this clock, t = f'/(] - v2/c2)'/2, The time i', read on this single
clock at rest in the moving system G, is therefore less than the time t measured
by a coincident clock in the rest system R. This agrees with Equation (3.13),
found previously from a fhoughf experiment.

The set of transformations we have found between x’y’z’t” and xyzt are:
x' = : (x vt
YT [
(1 = vi/es)”

y =Y.
z' = 2z,
) 1 vX oy .
po. — L ¥

These are called the [orenfz transformations. We have seen that they satisfy the
correspondence principle. They were derived by repeated use of the two postu-
lates of the theory of relativity.

mmple Suppose that G. is moving away from R. in the positive x direction at a speed
such that v/c = 5/13, If R. sets off a firecracker aty = 2=0, x= 10,000 m,

t = 107* sec, where and when does G. observe it?

. 12 o ) ) -
lution For v/¢c = 5/]3 L (1 -- v2/c2) = ]2/]3 . Then substitution into Equations (3,34)
gives yo = 27 = 0, x' = 1667 m, t' = 0.944 x 10 *sec.

.20 SIMULTANEITY

Aside from the time dilation factor (1 = vz/cz)’]/zl the equation for ' in the

Lorentz transformations differs from the Galilean transformations by a term

Figure 3.16. A number of explosions ot different positions along the x axis are simul-
toneous in R.
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proportional to x. To see the physical significance of this term, suppose that R.
sets off a number of explosions along the x axis, which by his own clocks occur
simultaneously, at the instantt = 0. (See Figure 3.16.) The equation t =
{t = vx/c?)/(1 = v¥/c?)'2 tells us that for t = 0 but for different positions
x, t' = —vx/c?(} = v¥/c?)"/% These are then the readings on the various clacks
of G. for the different explosions, all of which are observed simultaneously in
R. at t = 0. Thus, for positive x, these clocks in G appear to be set behind what
R. would call the correct time by the amounts vx/cz('l - vz/cz)m, which depend
on position. Hence events that appear simultaneous to R. do not appear simul-
taneous to G.; the tirnes of their occurrence depend on the x positions of the
events. Simultaneity is thus a concept which has no absolute meaning.

Perhaps we may understand this by considering the observer R. standing, as in

Figure 3.17, halfway between two light detectors D] and D;, that record the time

Figure 3.17. Light emitted from o point halfway between two detectors at rest in R
arrives simultaneously at the two detectors in R.

at which light hits them. If R. turns on the light bulb he is holding, then, since
it takes the same time for the wavefront to travel from R. to D, as to D,, the
detectors record equal times when light hits them. R. would say that the light
hit the detectors simultaneously.

However, if, as shown in Figure 3.18, G. is moving past R.s position at the
instant R. turns on the light, then as far as G. is concerned, he sees Dy and D,
rnoving backward with speed ¥, Then, in G.s system, the light wave going for-
ward and the detector Dg are approaching each other, while D1 is moving
parallel to the light wave going backward, The light wave going forward thus
appears to have fraveled less distance before it strikes the detector. Therefore,
in G.'s system, the light hits D; before it hits D], and the events which were
simultaneous in R are not simultaneous in G. Since G. believes that the light hits
D, first, but Dy and D, record the same time, G. says that the timer at D, is set
fast compared to that at [}. That is, the timers are not synchronized in G.
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Figure 3.18. Light emitted Qs G. passes the midpoint between two moving detectors
does not arrive at the detectors simultaneously in G.

mple 1. Two events at x = £100 km are observed by R. at the instant t = 0. When

are these events observed by G. if G.’s velocity in the positive x direction relative

to R has magnitude ¢/10? (Assume #' = t = 0 when x'= x = 0.)

ution t ’ = —vx/c2(] - v:[/c2=‘7'/2“0.] (£100)/(3 «x ]05)(0.‘99)]/2

mple

ution

= 43.35 x10 ¢ sec.
2. If the relative velocity has magnitude 9¢/10, when are they seen?
' = 0.9(£100)/(3 x 10°)(0.19)'2 = +6.88 x 107*sec.

When a length measurement of a moving object is made, the positions of both
ends of the rod must be marked at the same time. (See Figure 3.19.) Thus, for
R

E = =
I mi —
| B
! I
el
! |
|
|

|
X Xg

Figure 3.19. To measure the length of a moving rod, R. makes marks simultaneously at

the positions of the left o nd right ends, x; and xg. L= L, ...

a rod of length [ at rest in G, R. could measure its apparent length lby
noting the position of its |ef'* end, x;, and the position of its right end, Xg, at

the same time, and then measuring the difference Xg =— X;. Suppose, for example,
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that when G.'s speed is 10,000 ft/sec, R. waits 103 seconds to mark the right
end of the rod after he marks the left end. The error he would make in his length
measurement would be (1 O000)( 1 0_3) = 10 ft.

Let R. mark the positions of two ends of the rod at time f. Then, from the
Lorentz transformations, G. would say the right mark was made at the time
tr = (f—va/cz)/(]_Vz//cg 2 Also, G. would say the left mark was made at
the time t[ = (t - vxL/cz)/('I - v2/c2)]/2,5ince these times are not the same, the
marks do not appear to be made simultaneously in G; rather, it appears the
right end is marked first. The difference between these times is Af’ = f[ -- f;'z,
given by
vixe x) vl

At = =
c2(1 _ VZ/C2)]/2 c2(1 _ Vz/cz)l/z

(3.35)

In this time, relative to G. the R system moves a distance VAf’ to the left. Hence,

the righthand mark approaches the left end of the rod by a distance

2
vl
VAt = — YL (3.36)
2 2,2y 1/2
(- - vieHY
Thus, if to G. the length of the rod is I’, the distance between the marks is
2
S U S (3.37)
marks 1/2
C2(-| o VZ/CZ) /
To R., of course, the distance between the marks is Ly, = L, the apparent
length of the rod.
R | 1 |
v { L 1
B ey { — 1]
| |
I I
I I ,
R t * R at instant x, is marked, 1.
| |
v | i 1 ( .
el , _ - vx/cD
| e
I
R 4 *~— R moves to left before
! X is marked
v i .
e —— |
’ '
/i [ Rat instant x_ is marked, r',_
/ } Xy ! with t, >>t,
Xt~ —~ﬁ1—(f—~vx/cz)/ :
v V1 V3 ' |
,, —_ ,I :
marks L |
|

Figure 3.20. R.'s measurements of the length of the rod in G, as seen by G.



1

3.2 ] Transformation ot velocities 71

The above result can be used to check the length contraction effect, for sup-
pose the ratio of the apparent length of a moving rod to that of an identical rod
at rest is denoted by '|/‘y, where % is some constant depending on relative speed.
Then since to R. the rod at rest in G is moving, Lyg. = L= L'/7y. However,
to G. the marks at rest in R are moving with the same speed, so Lr'“urks = L/y.

Thus, eliminating L’ and L., from Equation (3.37),

L vil
; = 7‘. - c2(]_—vz/c2)'/2 (3.313)

This quadratic equation for 7 has solutions v = 1/(1 = v*/c?)* and ~ =
(1 - V2/c2)|/2. Since the second solution becomes -1 as v/c goes to zero,
it does not satisfy the correspondence principle and may be discarded. The first
solution agrees with the length contraction found previously from another
thought experiment. Since the present argument is based on the disogreemem
regarding simulfcnei'ry between the two frames, we see that this is the basic
reason why lengths in one system may appear shortened in another system, and

vice-versa.

TRANSFORMATION OF VELOCITIES

It is extremely useful to know how velocity measurements made by different
observers are related. Suppose, as is illustrated in Figure 3.21, that R. observes

z

r--dr,
dr

-~

Figure 3.21. The position vector of o particle changes by dr in time dt,

a particle moving in time dt from the point with coordinates X,¥,Zto x + dX,
y +dy, z + dz. In R the velocity then has components of dx/df, dy/df, and

dz/df. Suppose G. observes the very same particle going from x’, y’, z’ to
X' - dx’, y' + dy’, z' + dir' in the time interval dt'. The velocity components
in G are then dx'/dt', dy’/dt', and dz'/dt'. we shall use the Lorentz transforma-
tion equations to find dx’, dy', dz’, and dt’ in terms of the unprimed differ-
ential quantities. The use of the velocity definitions just stated will then lead to the

velocity transformations.
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One of the equations of the Lorentz transformation, Equations (3.34), is
1 .
x' = —— (x vt) (3.39)
@ —vieH
the differential form of this equation is
1 .
dx’ = —22T/2 (dx - Vdf) (\3.40)
@ = v/c?)
This was obtained simply by differentiation, understanding that the relative
velocity of the two observers is kept constant, i.e. that v is constant. The incre-

ment dt' is obtained in the same way from the equation,

! vX
= — — —— |t - — 3.41
a - vz/c’)”"( ¢ (341
It is
;o 1 vdx .
dt’ = (1 — vy~ (d' - c2> (3.42)

Hence, the x’ component of velocity is

gl’z _dx = vdt _ (3.43)

dt’ dt - - vdx/c?
If we divide the numerator and denominator through by dt, on the righthand
side we get (dx/dt) - v in the numerator and 1 — V(dx/df)/c2 in the denomi-
nator. (We shall use the dot notation for time derivatives, X = dx/df, the x
component of velocity ir R; likewise in G, x' = dx'/df’.) Equation (3.43) is,

in this notation,
2 dx v (3.44)
dt’ C1-- vx/c?)

Thus, for example, if O particle goes with an x component of velocity, x =
—VZ c relative to R, adhg v = Y2 c, then G. will measure the x' component of

velocity to be

(=%e = Yac) 4 c
0+ %) 5
On the other hand, the Galilean transformation would give X'z kemy =
-V c—-Y%¢=—c
To obtain the transformation equation for y, we have y = d)’/df and )", =

dy'/df'. Since y’ =y, we have dy’ = dy. Also, for the differential dt’, we

may use the expression in Equation (3.42). Therefore,

oAy VT 1o
= dt' = (dt—vdx/c?) '
Hence, dividing numerator and denominator by dt, we obtain
2, 2312 .
1 -V /C
g = /)y (3.46)

(1 =vi/eD)
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3.2 1 Transformation of velocities

By a similar derivation, we get for i

2172
g (L o) )2 z (3.47)
(1 =vx/c")

If a particle is observed by R. to move with velocity components (10,000,; 42,000;
128,000) km/se¢, then when G. passes R. with a speed %2 c in the positive x

direction, what will be the velocity components he observes?

1 owx/t = o1 [10Y)[1.5x10°]/[3x 10°)2= 59
VTV = V1T % = VY,

x"= (10" 1.5 x 10°)/(°%,) = 1.42 x 10° km/sec;
y' = % V342 x 104)/(%,,) = 3.70 x 10" km/sec;
2= %BV3(128 x 10%)/(5%,) = 11.3 x 10" km/sec.

60 7/

Equations (3.47), (3.46) and (3.44) are the desired velocity transformations.
These transformations satisfy the principle of relativity, for the inverse trans-
formations from G to R are of the same mathematical form, except for fh\e sign of

v. We may show this, for example, by solving Equation (3.44) for X in terms of X ':

. .-
o ( v_x2>___ x = KX, (3.48)
[ [
or
,/ vx'
fo)esen s
\ C
giving x'
+
i = XtV (3.50)

1+ vx'/c?

'Compcrison with Equation (3.44) shows clearly that the principle of relativity is
satisfied. The other transformation equations, Equations (3.46) and (3.47), also
have this property. If all terms involving factors of v/c in Equations (3.44), (3.46),
(3.47) are neglected, we obtain the Galilean transformation, thus showing that

the correspondence principle is satisfied.

ple If a light ray in R has velocity components y = c sin f, x = c cos f, so that

tion

the magnitude of the velocity is ¢, show that in another inertial system tlhe speed

is also c, so that the principle of the constancy of the speed of light is satisfied.

x' = (ccos B =v)/(1=v cosbc);

y' = V1 —vic esin /(- - veos B/c)

(%) + (y)? = [(c2c052t0 —2¢cvcos O+ v2) + (c?sin? 8 = vZsin? 0)]
(1 (2v/c)cos 6+ (vP/c?) cos® )

Since cos’ f + sin? § = 1, this becomes

(%) + (y)? = [c" 2cvcos 1+ vPcos’8]
\ Y [V (2v/c) ros 0 + (v?/c?) cos® 0]
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summary

LAWS OF CLASSICAL MECHANICS

In  classical (Newtonian) mechanics, there were five quantities conserved: mass,
energy, momentum, angular momentum and charge. In relativistic mechanics, all
of the corresponding conservation laws are modified except conservation of

charge.

CORRESPONDENCE PRINCIPLE

The correspondence prinwcip|e is a useful guide in the derivation of new theories.
It states that any new theory containing an old, well-established theory as a
special case, but applicuble over a greater range of phenomena, must give the

same prediction as the old where the old applies.

INERTIAL SYSTEM

An inertial system of coordinates is one in which the first law of motion is
satisfied. A good <Approximation to an inertial system may be obtained by choos-
ing an origin of axes at the center of the sun and allowing the axes to point
toward fixed stars. Then the acceleration and rate of rotation of the axes are

negligible.

CALILEAN TRANSFORMATIONS

A system moving with constant velocity relative to an inertial system is also an
inertial system. The coordinates of events in a system S' moving with velocity v

relative to the inertial system S are given by the Galilean transformations:

r =r = vt
t =t

MICHELSON-MORLEY EXPERIMENT

If the ether exists, and light propagates with speed c relative to the ether, and
if the Galilean transformation laws are correct, then it should be possible to
detect the motion of the earth through tlhe ether. The Michelson-Morley experi-
ment, performed with €In interferometer, gave a null result for this velocity, as
did many other experiments designed to detect the motion of the earth through

the ether.



Summary

POSTULATES OF RELATIVITY

The postulates of relativity are:

l. Principle of Relmivify: All the laws of physics are the same in form, in all
inertial frames.
Il. Principle of the Constanwcy of the Speed of Light: The speed of light, c, is

a constant irreS\Decﬁve of the state of motion of the source.

It follows that an observer in any inertial frame will observe light to travel with

speed c.

BONCH-BRUEVICH’S EXPERIMENT

The experiment of Banch-Bruevich in which the difference of the speed of |iighf
coming from opposite limbs of the sun was found to be zero, shows that liight

does not obey the Golilean law for the addition of velocities.

TIME DILATION

A moving clock, which reads the time interval At’, when compared with a series
of clocks at rest relative to the observer that read the time interval At, will be
observed to beat more slowly. If the velocity of the moving clock is v, relative

to the other clocks, then

This time dilation is observed experimentally in the decay in flight of p-mesons.

LENGTH CONTRACTION

An observer comparing the length of a moving rod, oriented parallel to the
direction of relative velocity v, with rods placed at rest, will observe the length
AL of the moving rod to be shorter than its length AL’ as measured by an

observer at rest relative to it

SIMULTANEITY

Simultaneity is a conc:epf which depends on the observer. Two events which are

simultaneous when viewed in one inertial frame are not necessarily simulfcjneous
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when viewed in an inertial frame moving relative to the first. An observer S’
observing events which to S appear simultaneous at x;, and x,, will see a time

difference of magnitude

- vix, — x3)

Af/ = —
V1 — V2/C2 C2

LORENTZ TRANSFORMATIONS

The Lorentz transformations are a set of four equations giving relations between
coordinates of events as measured in the inertial system S’, which is moving

with relative speed v with respect to S in the x, x’ directions. If the origins
are chosen so that + = t' = 0, when the origins pass, then the Lorentz trans-
formations are:
1 1
' vX
x=?(x -- Vf); y =y Z’=Z; f'_tf"—
1 = v:/c

VELOCITY TRANSFORMATIONS

If a particle in the S’ system has velocity components (i’, y', i’) and the S’
system moves with speed v in the x direction relative to S, then the unprimed

and primed velocity components are related by:

PR SR

1 - xkv/c?

problems

1. Prove that the classical low of conservation of momentum in o two-particle collision
is form-invoriont under Golilean transformations, if moss is conserved.

2. If two objects, of masses m; and m; and velocities V¥, and V,, whose relative
velocity toward each other is V = Vp = V; collide inelastically and stick together,
show using Newtonian mechanics that the kinetic energy lost is an invariant under
Golilean transformations. What conservation lows do you hove to assume in order to
prove this?

Answer: Conservation of momentum, conservation of moss.

3. Prove thot Newton’s second low of motion is not form-invariant under o transforma-
tion between an inertial system and o second coordinate frame which has @ constant
acceleration relative to the first.

4. There are a number of double stars cq”ed eclipsing binaries, where the two bodies
revolve about their common center of mass. As seen from earth, in each revolution one

star passes in front of the other so that the second star’s light cannot be seen,



10.

1.

Problem

When photographs of these stars are made in different colors or wavelengths, the
periods for this eclipse are found to be identical. Since these stars may be thousands,
of light-years away (one Iighf—year is the distance light travels in a year), what con-
clusion can you draw about variation of the speed of light with wavelength?

It wos at one time suggested that the speed of light is not constant relative to an
ether but is constant relative to the object emitting it, and that Galilean trans-
formations could then be used. Argue from the observations on eclipsing binaries dis-
cussed in the previous problem that this cannot be the case.

The electron beam in the picture tube of a TV set can move across the screen at a
speed faster than c. How car this be consistent with special relativity?

If in one second a moving s*'opwa'rch in good working condition is seen to register
I3 se¢, how fast is it moving relative to you?

Answer: 0.866c.

If a person’s heart beats 70 times per minute, what would be the apparent pulse
rate if he were moving ot a speed of .9¢?

Answer: 30.5 per min.

In one second of your time, how much change of time would a stop watch register
if it were moving at a speed relative to you of (a) 19/181¢c; (b) 4/5 c; (c) 60/61 c.
Answer:  180/181sec; 3/5sec; 1 1/61 sec.

Consider two observers, S and $’. S’ is moving relative to S with speed y, S shines
a light ray out with a component of velocity V parallel to the direction of relative
motion and a component perpendicular to that direction. S observes the light
moving parallel to his y axis (y being normal to V). Assuming y’ =y, and the
constancy of the speed of light, derive the time dilation formula by analyzing mea-
surements that S and S’ could make.

A beam of protons coming out of an accelerator is contaminated by 7+ -mesons
which have a lifetime when at rest of 2.54 x 1 0~a sec and travel with speed (,990 c.
How far from the beam port must a target be placed in order that nearly all the
mesons will have deoayed before striking the target? Assume the mesons have 3 life-
times in their rest system befo-e striking target.

Answer: 160 m.

12. A hydrogen atom emits some light of wavelength 6563 Angstroms in the frame of

13.

14,

reference at rest with respect to the atom. If the atom were moving at 5/]3 the
speed of light relative to you in a direction perpendicular to the displacement of the
atom relative ta you, what wculd be the wavelength of the light you would observe?
(Use the time dilation formula to find the ratio of frequencies and the fact that the
wavelength is the speed of light divided by the frequency.) 1 Angstrom = ]0_”0 m.
Answer: 71 10 Angstroms.

What is the apparent length of a meter stick if it is moving relative to you pqrqllel to
its length at a speed of (a) 0.1 c; (b) 0.8 c; (c) 0.99 c?

Answer: 0995 m; 0.600 m: 0.141 m.

Repeat the previous problem if in its rest frame the meter stick is at 60” relative to the
velocity.

Answer: 0999 m; 0916 m 0.869 m.

15. It was pointed out that if one twin went to another planet and back, he would be

younger than the stay-at-home twin, because his clocks would ryn slow compared to
earth clocks. If the traveler’s speed is v and the planet’s distance away is L, the
time it takes on earth for the round trip is 2L/v. Using the distance of the trip as seen

by the spaceman, find the time as far as he is concerned.
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16.

17.

18.

19.

20.

21.

22.

2,2
20V — v¥e
Answer: ——————
¥
Two twin astronauts, Ayand Az, are to make trips to distant planets, distances
d, and d; away, respectively, with d1 # d;. They wish to choose their speeds so
their age difference upon returning to earth is zero. Show that they should choose

their speeds vy and V3 such that

d ——— d -3
2 \/ vi/et) = —2( 1 =V 7v§/c2)

Vi V2
or equivalently,
2, 2\1/2
v 2vpdy[1=C 1 =v3/c”)""]
- 2,42 2\,.2 2 2,.2\1/2
di [Ri-ddet] + 2d - 1 =vieh)?
Solve the velocity transformation equofions algebraically for )'(, Y, Zin terms of
x',y’,i', and show that the inverse transformations result from changing ¥ to —v
and interchanging primed and unprimed symbols.
Consider the Lorentztransformations, x' = (\/] - V2/C2)_](x—vi),f,:
(\/]. . v2/c2)A](fvx/c2)_Imagine that R. has a stick of length Lalong the

Xaxisat rest in his system, with the |ef1‘end at X=0. Suppose G. marks fhléends

of the stick simultaneously in the primed system at f’ = 0, and measures the length L’.
Show that I’ = \/1 -VZ/CZL-Find the times at which R. sees G. measure

the two ends; show that this lack of simultaneous measurement and G.Is contracted
measuring rods as seen by R. are sufficient to account for G,’S measurement of I,

L= \/1 - VZ/CQL, $0 far as R. is concerned.

A student is given an examination to be completed in 1 hr by the professor’s clock.

The professor moves at a speed of 0.97c¢ relative to the student, and sends back a
light signal when his clock reads 1 hr. The student stops writing when the light signal

reaches him. How much time did the student have for the exam?

/T T v/jc
Answer: P —— 1 hrs.
1 v/c

In an inertial system, a number of clocks (Iré synchronized. If you move at 30 km/sec
relative to the system, how far apart in the direction of your velocity do clocks appear
to be which to you are 1 sec out of synchronism?

Answer: 3 X]qum.

Two clocks on the X axis in a system moving at 3/56 relative to you appear to be
synchronized. They appear to be 10 m Op«:)rf.How much do the clocks appear to
be out of synchronism in the rest frame of the clocks?

Answer: 2.5 x ]Oﬁssec.

Two colliding beams of electrons each have velocities of .50 ¢ as observed in the lab.

What is the relative speed of the electrons (N the inertial system in which one of the
beams of electrons is at rest?

Answer: 0.8 (.,



relativistic mechanics

and dynamics

Elecause of the modifications of the velocity transformations introduced by
relativistic effects, the concept;, of energy, momentum and angular momentum in
special relativity must be redefined so that the laws of physics are form-invariant
vvith respect to Lorentz transformations. The reader should already be familial
vvith the Newtonian laws of conservation of energy, momentum and angular
momentum. It is still possible in relativity to define momentum, angular mo-
mentum and energy in such a way that the general conservation laws are valid..
However, then new effects arise, such as the variation of mass with velocity, and
the equivalence of mass and energy, which is expressed by the famous equation,

E = mc2. These effects will be derived and discussed in this chapter.

LORENTZ TRANSFORMATIONS

Recall that when two observers are moving relative to each other, as in Fig-
ure 4.1, where G. moves past R. with velocity v, their observations of the space-
time coordinates of an event gre related not by means of the Galilean trans-
formations, but by the lLorentz transformations. If primed quantities (X', ..., f’)

.

z r4

Figure 4.1. Inertial systems of R. and G.
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are used to denote measurements made by G. and unprimed quantities (x, . . , f)

are used to denote R.’s measurements, the Lorentz transformations are

, 1

V1= vie?

x = vty =y 2 =z

¥ 1 t- = (4.1)

= S, 2 .
V1 — vl ¢

Also, if a particle moves so that its velocity components relative to R. are

X, ¥, Z, then its velocity components relative to G. are

2
- oy _ 'z )
‘ 1/ (1 vijeh (42)

We shall frequently refer to these transformations in discussing momentum and

energy.

DISCREPANCY BETWEEN EXPERIMENT AND
NEWTONIAN MOMENTUM

Momentum in Newtonian mechanics is defined as mass times velocity, and the
total momentum is conserved when particles collide. The question is, can we also
find a quantity in relativistic mechanics which is conserved when particles collide?
We ultimately have to do this by looking to experiment. However, by using the
general principles we have previously discussed to analyze a thought experiment,
we can predict what we might expect the experimental results to be. First of all,
the relativistic quantity which we shall call momentum must reduce to the Newton-
ian expression, mass times velocity, when the speed is much less than c, Cl(iCOI’d-
ing to the correspondence principle.

Let us next ask, can a relativistic expression for momentum still be given simply
as mgv when mg is the Newtonian mass? The mass of a proton is 1.67 x 1 0A27
kg. The maximum speed a proton can have is ¢ = 3 x ]08 m/sec. Hence, if this
expression is correct, the maximum momentum a proton can have is 50 x
]0‘]9 kg-m/sec. However, in some cosmic rays, which are high energy particles
striking the earth from owuter space, fast protons having momenta on the order of
]078 kg--m/sec are observed. Such large particle momenta can be measured in
principle by allowing the proton to collide with another particle, thus giving up
some momentum; then allowing the proton and the other particle to collide with
other particles, sharing their momenta; and so on, until the proton has caused
a large number of particles to be traveling with generally low speeds. Then the
momenta of each of these particles can be measured by measuring their mass
and velocity. By assuming that momentum is conserved, one can work backward

to find the initial momentum of the incident proton. We conclude that the



1.3

4.3 Momentum from @ thought experiment

Newtonian expression mgv cannot be a valid expression for momentum in the

‘case of high velocities.

MOMENTUM FROM A THOUGHT EXPERIMENT

Nevertheless, we shall attempt to find theoretically an expression of the form
mv for the relativistic momentum of a particle, such that the total momentum is
conserved in collisions. Experimenters have discovered that there indeed exists
such a vector quantity; however, in relativistic mechanics the factor m, multi-
plying v is not a constant independent of speed. We shall define m as the mass.
The mass my that a particle has at rest we shall call the rest mass. If v <« c, the
‘correspondence principle requires that m = mg. From our above arguments
about cosmic rays, we would expect m to increase as the speed increases.

Suppose that G. and R. have identical guns that shoot identical bullets. When
we say “identical” bullets, we mean that the bullets have equal rest masses,
My. The guns are assumed to shoot the bullets out with equal muzzle velocities,
denoted by U. G. shoots his oullet along the negative y’ axis. Thus, the y’ com-
ponent of velocity that G. sees is

yo = -U (4.3)

He sees no x component of velocity for the bullet, i.e. xé = 0. (See Figure 4.2.)

R., watching G_'s bullet, sees a y component of velocity,

(4.4)

R!s bullet{

Figure 4.2. Bullets fired with myzzle speeds U in their respective rest systems, arranged
50 that a collision occurs.
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by Equations (4.2). Let R. shoot his bullet along the positive y axis. It will then

have a ¥y component of velocity, as observed by R., of

e = +U (4.5)

Again using Equations 4.2, since )'(R = 0, the bullet shot by R. has a y’ com-

ponent of velocity when observed by G. of

2
., v
Vi = 1/‘ ] u (4.6)

A prime or lack of a prime on the velocity component means it is observed by
Gr. or R., respectively. The subscript G or R means the bullet is shot by G. or R,
respectively.

Now we suppose that the bullets collide and stick together, and that mo-
mentum in the y direction is conserved during the collision. This experiment has
been set up so that there is complete symmetry between the coordinate systems.
Both R. and G. are shooting bullets that have the same rest masses, with the
same muzzle velocities, in their own systems of coordinates. They both shoot
normal to the direction of relative motion between the coordinate systems. By
the principle of relativity, then, neither coordinate system is preferred,, and
both R. and G. must observe the same experimental results in their respective
coordinate systems. Frorn the symmetry between the two coordinate systems, if G.
observes a final y’ velocity that is negative, i.e. a velocity component which is
parallel to the original velocity of his bullet, then R. must observe a final y
velocity which is parallel to the original y velocity of his bullet and which has a
positive sign. However, from the results of the Lorentz velocity transformations,
Equations 4.2, )'lcunnoi be positive while )'l' is negative. Thus, the final y com-
ponent of velocity of the bullets after collision must be zero. Since we assumed
that the momentum is mv, this means that the final y component of momentum
of the two bullets is zero. So if momentum is to be conserved, the total y com-
ponent of momentum of the two bullets before collision must also be zero in both
systems of coordinates.

Let us look at the initial momentum from the point of view of R. Suppose he
observes that his bullet has a mass mg. Then he sees a momentum for this bullet
of m,,U, If G,'s bullet, as observed by R., has a mass mg and a y component
of velocity )"G: then the y component of momentum of this bullet, as seen by R,

is mG)'/G, Thus, the total momentum seen by R. is

mgU + mgyg= o0 (4.7)

By Equation (4.4), the velocity component, ).'G: of G.'s bullet observed by R. is
--(1 v2/c2)]/2U. On substituting this into Equation (4.7) and solving for Mg,

we find that

mpg
mg = m (48)



4.4 Experimental verification of mass formula

This equation is valid for all values of U, which has cqnce|ed out. In the limit in
which U, the muzzle velocity, approaches zero, R,'s bullet is at rest relative to R,
and mg = mg, the rest mass. The speed of G.'s bullet relative to R. is then the
same as that of G., and is equal to v. Hence, the moss of the moving (G.'s) bullet,
as observed by R., is given in terms of its rest mass Mgy and its speed vy by

Mo

(relativistic mass)

m(=me) = ey (4.9)

Thus, if the relativistic momentum of a rapidly moving particle is proportional

to v, the momentum must be of the form

mgoVv

P = (-l _ V2/c2 )]/2

(4.10)
for momentum to be conserved.

If we had written down the law of conservation of momentum, Equation (4.7),
from the point of view of G. rather than of R., the results would have been the
same: The mass of a moving object is increased by the factor (1 — vz/c:!)“/?over
the mass the same obhecf possesses when at rest.

Consider the expression for the mass of a particle, mg/(1 = v2/c2)"/2, In the
limit as v approaches c, this mass increases without limit. Thus, arbitrarily large

momenta are possible without having arbitrarily large velocities.

nple If a particle moves with 0.8 the speed of light, what will its mass be in terms of

the rest mass?

fion (1 -- 0.8%)2=0.6. Then m = my/0.6 = 1.667m,.

In the limit as v becomes very small compared to c, the mass m of a particle of
rest mass mg is given by m = mg, because in this limit (1 = v2/c2)1/2 is unity.

This result is in agreement with the correspondence principle.

EXPERIMENTAL VERIFICATION OF MASS FORMULA

The increase of mass with velocify was observed in an experiment performed by
Biicherer in 1908. By proiecﬂ}ng electrons into crossed electric and magnetic
fields, he was able to select electrons of known velocity. The subsequent deflec-
tion of the electrons in a magnetic field gave the mass. Given in Table 4.1 are the

values of m/m,, as a funcﬁon of v/c for the electrons observed by Biicherer. The

TABLE 4. 1 Increase of Moss With Speed

v/e m/mg (observed) m/m,, (theory)
0.3173 1.059 1.055
0.4286 1.106 1.107

0.6879 1.370 1.376
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SCIENCE ABSTRACTS.

Koln,)—Repeating one of Kaufmann’s experiments as to the deflection of g,
electrons in an electric and magnetic field, with special precautions to obtain
the best possible results as to the values of e¢fme a high velocities, the author
finds values which he claims to be a confirmation of the Lorentz-Einstein, SCi€nce Abstracts,
principle of relativity. The close agreement of the results on this principle 1 1% 687 (1 908).
are shown in the following table, in which g denotes the ratio of the speed

of the electron to that of light, the magnetic fields used being of the order
127 gauss —

Values of (e mg) x 10-i on Theory of-
A.
Maxwell. Lorentz
0:8792 1-676 1'730
04286 1670 1.730
(5160 1-648 1799
06879 1578 1730

schiedener Weise. 1)ie Formel /15a) ergibt:
po=%-r2 ),
(16e) 1 1 l,ié 2 )
10= = (25 + i lp)
f) ‘ A“'r=%"‘0'w(ﬂ)’
(16 1 (146 1+8) _ 1.
v = { (557 m(25) -1}

Diese Formeln fur longitudinak und transversale Masse beziehen
srh sowohl avf Volumenladung, wie auf Fldchenladung.
Die Formel (16f) ist es, die von Hm. W. Kaufmann
auf Grund seiner Messungen ilber die Ablenkbarkeit der
Becquerelstrahlen im Intervalle (8 = 0,60 bis # = 0,95 etwa) Figure 4.3, A page from An
gepriift warde. Er fand die Formel innerhalb der Fehler- nalen der Physik 10, 152 (1902
grenze der Versuche (1 Proz. bis 1,6 Proz.) bestitigt. Messende showing the “Maxwell” mas
Versnche bei mittleren Geschwindigkeiten (8 = 0,8 bis § = 0,6) formulas referred to by Bicherer
liegen bisher nicht vor. Ebensowenig liegen Versuche dber
longitudinale Beechleunigung rasch bewegter Elektronen vor,
reiche etwa zur Prifung der Formel (18e) herangezogen
werden kdonten. Aunch wiirde diese Formel wohl bier nicht so
gute Dienste leisten, wie die Formeln (15a), (15 b) fir Impuls
and Energie, relche direkt die vom HuBeren Felde in einer
gegebenen Zeit bez. auf einer gegebenen Strecke dem  Elektrou
erteilte Geschwindigkeit bectimmen.
Ordnet man nach aufsteigenden Potenzen von 8, so erhalt
man diefiir # < 1 konvergenten Beihenentwickelungen:

(168) p=p{l+ | B +7-B+T B+ ]
(A6h) w, = po | | + 355 B+ 7B+ B+

Ann denselben geht hervor, daB, den Grenzfall sehr lang-
samer Bewegung ausgenommen, die longitudinale Masse stets
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third column gives the corresponding values calculated from Equation \[14.9). in-
numerable experiments since 1908 have continued to be in excellent agreement
with theory. (See Figure 4.3) Also experiments verify that with the expression

for momentum found above, nomentum is always conserved in collisions between
particles.

.5 RELATIVISTIC SECOND LAW OF MOTION

In Newtonian mechanics, the second law for a particle can be written F =
m dv/df; where m is a constant. Hence, in the nonrelativistic case, we do not have
to consider the effect of changes in m. However, the question arises in relativistic
mechanics as to whether the correct relativistic expression is: (a) F = m dv/dl;
or (b) F = d{mv)/d}; or (c) some other intermediate expression. We may
(answer this in part by considering a constant force Fo acting on an electron
in the x direction. This force could be obtained by letting the electron move in a
[uniform electric field. Let us take case (a), F, = Fy= mdyv, /dt, and show that it
leads to an unreasonable result. Imagine an electron starting from rest, under the
action only of the constant force, F4, in the x direction, so that Vv, = v, Inserting
the expression for m from Equation (4.6), we have

M dv_ Fo (4.11)

V1-vi/c?d t

This can be written: dv/\/] V2/c2 = Fo/mg dt. The initial condition we
assumed on v is that at f = 0, v = 0. The soluton is v = c sin (Fof/m(,c).
This is easily verified by substitution into the differential equation. The expression
for v says that for the time when, for instance, Fof/moc = 37r/2, the velocity
is negative. Also, the velocity has a magnitude of c periodically. These conclusions
do not seem reasonable. More important, they disagree with experiment. So the
possibility F = mdv/dt is eliminated.

In the following section, it will be shown that case (b), F = d/df (mv) leads
directly to the law of conservation of momentum for collisions between particles.
Thus case (b) seems highly reasonable, and, in fact, its correctness is borne out by

experiment. In other words, force is time rate of change of momentum:

d
F=— (mv) 4.12
o (4.12)
Of course, this form is also valid for Newtonian mechanics.
.6 THIRD LAW OF MOTION AND CONSERVATION OF MOMENTUM
If the force is given by F = d{(mv)/dt, then if the third law is also valid, we c:an

show that relativisic momentum is conserved in a collision. Newton’s third law of

motion states that if particle number one acts on particle number two with a force
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F1°n2, and if particle number two acts on one with F2 on » during a collision,
then

Flon2 + FZon‘ = 0 (4.13)
If py= m,;V,is the momentum of particle number one, then (assuming no other
forces act)
dp,
Faont _ y (4.14)
Similarly,
dp,
Flonz — (4.15)
= dt
Adding these two equations and using the law of action and reaction, we find
d
M = 0 (4.16)
dt

Integration once over the time gives
pr + p2 = C (4.17)

where c is a constant. Hence, the momentum is constant, or total momentum after
the collision is equal to the total momentum before the collision. In other words,
the third law of motion leads to conservation of momentum in collisions. The

result can be extended for a system of an arbitrary number of particles.

4.7 RELATIVISTIC ENERGY

In Newtonian mechanics, the work done on a body when a force is exerted which
moves the body through some distance, goes into increasing the energy of the
body. This is also true in relativity, and work is still defined the same way. If E is
the energy of a body, and a force F exerted is moved through a distance dr in

doing work on the body, then the increase in energy E is:
dE = F-dr (4.18)
since F = d(mv)/dt, the expression for dE becomes
dimv),

dE = dr (4.19)
dt

We can reinterpret the right side of this equation by writing the dt underneath

the dr and noting that dr/df = v. Then
dE = d(mv)-v= dm(v-v)+ m(dv-v) (4.20)

All the quantities on the right side of this equation are functions of the velocity, v.
We shall express the right side as an exact differential in order to find an ex-

pression for energy in terms of velocity. We first write the scalar products in
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terms of the scalar speed v: v+v = y2and v-dv = Y2 d(v-v)= ¥ dvZ so

dE = dm(v?)+ %md(vz) (4.21)

The m here is the relativisic mass, mg/( 1 — vi/e? )”?Therefore,

Yamod(v?)

dm = —_—
= [C2('| - V2/C2)3/2]

(4.22)

Substituting this expression for dm into Equation (4.21), and combining terms,

we get
Ya d(v?/c?
dE = mocz% (4.23)
a=vjeH
‘The right side can now easly be integrated, yielding
m C2
= 0 + constani (4.24)

@ - vieh 12

It is very convenient to set the constant of integration equal to zero. If this is done,

the result can be expressed in terms of m:

E = mc? (relativistic energy) (4.25)
L

One thing which this implies is that associated with an increase in mass is an
increase in energy and vice versa. Another thing which is implied is that if
v = 0, the energy is E = moc2; this may be interpreted as the rest energy a body

has by virtue of the fact that it possesses mass.

KINETIC ENERGY

That part of the energy which is due to the particle’s motion is called kinetic:
energy. It is simply the total energy mc2 minus the energy with no motion,,
nn(,C?. If we denote kinetic energy by the symbol T, then

T = mc’—moci moc 1 (4.26)

Y
V1= vl
Let us first find the rest energy of a proton. Its mass is 1.67 x 1 0_27 kg. Then the

rest energy is

E = moc? = (1.67 x 107073 x 1082 = 1.50 x 107"

Next suppose the proton is traveling at speed (4/5 )C relative to an observer. Its

kinetic energy is

1] = @so x 1079 S0 1)- 100 10779

3
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The classical expression for the kinetic energy would give Y m0V2 = V2 (1.157 x
10727)(2.4 X 108)2 = 0.48 x 10710 | On the other hand, if the speed of the
proton is as small as (l/zo)c' the relativistic kinetic energy is 1.88 x ]O_‘3 i,
and to this number of signiﬂcont figures the classical expression gives the same

result.

We see from this example that when the speed is much less than c, the relq-
tivistic and classical kinetic energy agree. This is in accord with the correspon-
dence principle. We may prove that the expressions agree in general for small
v/c. We shall need to ex\pand @ - v2/c2)"% for small v/c. For this, we use the bi-
nomial theorem, (a ~ b)” = g" na"'b + . . -, Then, with a = 1, b =
vl/c¢?, and n = —}, it follows that (1 — v2/c?)™ is approximately 1 +
Yo V2/c2. Here we are (dropping terms of order v‘/c4 or higher because they

are assumed to be very small. Then, approximately,

[N)

1v 1
_ 2 L _ 2
T = mgc <1 * g 7 -1 = Mo (4.27)

. ) . 2 ) )
Note that just as the classical expression, Ya mgv~, is not correct for the kinetic

energy at high energies, neither is Ya mv2.

POTENTIAL ENERGY AND CONSERVATION OF ENERGY

The energy changes considered so far are changes in kinetic energy due to forces

which may be either conservative or nonconservative. If a conservative force,

2
f F.-dr

[}

F,, is present, then

(V2 V) (4.28)

where V is the potential energy depending only on the position and not on the
integration path. If there are no forces other than the conservative ones, from

the definition of energy,

o

ry vy
[ dE = f Foodr = myc? o m,c? (4.29)

r 1

On equating the right sides of Equations (4.28) and (4.29) and rearranging, we
find that

nT]C2 + V| = m2c2 + V;, (430)

This is the conservation of energy equation.
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10 EXPERIMENTAL VERIFICATION OF EQUIVALENCE
OF MASS AND ENERGY

Equation (4.25) indicates as we have seen, that there is energy-rest (energy--
associated with the rest mass, i.e. E0 = mocz, There is plenty of evidence in
nuclear physics that indicates that rest mass is indeed equivalent to energy, and
that mass can be converted to energy and vice versa.

An example of this occurs when lithium is bombarded by fast protons: fhe
lithium nucleus, 3Li7, and a proton, ]p], combine to form an unstable nucleus
which splits into two fast helium nuclei, He*: \p' + ;L7 — ,He + ,He*.
The rest masses of these particles are given in Table 4.2, in atomic mass units
(qmu)_ (1 amu is the mass of an atom of C‘z; 1 amu= 1.660 x 1077 kg. These

mass units were discussed in Chapter 1.)

TABLE 4.2 Masses of particles
participating in reaction P + Li — 2He, in amu

P 1.0073
Li 7.0143
He 4.0015

The sum of the P and Li masses is the total mass of the incoming particles; it is
8.0216 amu. The total rest mass of the outgoing particles is 8.0030 @amu. Thus,
rest mass is not conserved. However, energy is conserved in the overall nuclear
reaction, for very precise measurements of the difference between the kinetic
energy of the incoming proton and the total kinetic energy of the He nuclei gives
AE = (2.770 = 0.005) x 1072 j- The increase in rest mass is 0.0186 amu, or
0.309 x 1072

It thus appears that the increase in mass is accounted for quantitatively by a

kg. Then the increase in rest energy is Amoc2 =278 x 107" i

corresponding decrease in kinetic energy.
aple A mass of 1 gm has a rest energy of
moc? = (107 kg)(3x 108 m/sec)?= 9 x 10".

If this energy could all be converted into electricity and sold at a rate of 6¢ per

kilowatt-hour, how much would it be worth?

tion (9 x 10™)(1/[3.6 x 10°] kw-hr/j){0.06) = 1.5 million dollars.

11 RELATIONSHIP BETWEEN ENERGY AND MOMENTUM
In Newtonian mechanics, the relationship between kinetic energy and momentum
is

Ta-my?= /= B 4 31)
2
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A general relation between energy and momentum is of considerable utility in
special relativity. We may use the expressions for energy and momentum, Equq-
tions (4.10) and (4.25), to obtain such a relaton mathematically. We have, upon
squaring Equation (4.25),
E? = mi¢! = mict (4.32)
(1 —vieh)

In the same way,

?p? = — (4.33)

Then, subtracting,

2 2
2 2f € —V .
E? - *p? = mic?|[———) = mict (4.34)
2,2 .
1 — v%/c

Since the rest energy plus kinetic energy should be positive, Equation (4.34) can
be solved for F by taking the positive square root: F = \/p2c2+ mgc“. In the
limit asp becomes very small, the binomial theorem may be used to expand the
right side of the equaﬁon E = \/Czp2 + m%c‘, to obtain, approximately,
T=FE-— moc2 = p2/2m(, in agreement with the Newtonian result.

1. In Chapter 1 a unit of energy called the electron volt {eV) was defined as
1 eV =1602 x 107" joules = e joules. Also, 1 MeV = 10% eV. The rest moss of
an electron is approximately 9 x 10731 kg. Find its rest energy in MeV,

E; = mgc? = (9 x 107%)(3 x 10%)%/1.6 x 107 j/MeV = 0.5 MeV. To three

significant figures, the correct value is 051 1 MeV.

2. If an electron is emitted from a nucleus in a beta decay with a kinetic energy
of 05 MeV, what is its momentum in MeV/c?

E?= ?p?+ mic* or p = (E2—mic*)?/e.
Eis? ' moc? o that B2 — mict J(J + 2moc?) = 0.5(0.5 + 2[0.511]) =
0.761 MeV?2. The momentum in MeV/c is numerically the square root of this

number: p = v/0.761 = 0.872 Me\//c, In kg-m/set, this would be

(0.872)( 1.6 x 1 0~'* j/MeV)
(3 x ]08)

4.65 x 107% kg-m/sec.

REST MASS OF A° FROM EXPERIMENT

We shall now consider in detail a more elaborate example, which shows how
one may use the relativistic equations to find experimentally an unknown par-
ticle mass, in terms of known masses and measured energies and momenta. The
rest mass of the particle will be measured using bubble chamber photographs in

which a Ao particle decays into a proton and a 7T meson. If you wish to follow



4,72 Rest mass of Ao from {experiment

along on the measurements, you will need to use a protractor, a flexible plastic
ruler and a slide rule.

A charged particle moving rapidly through a bubble chamber leaves a trail of
very tiny bubbles that render its track visible and that CQN be photographed. In
the experiment discussed here, a beam of very high energy negatively charged
particles called K~ mesons was allowed to penetrate into a bubble chamber
filed with a mixture of orgcmic liquids, so that there were large numbers of the
more ordinary constituents of matter, e.g. protons,. neutrons and electrons,
present in the chamber. These K~ mesons (the superscript means a parfic:le having
a negative charge) may combine with the protons (p’ ) and neutrons (n) to pro-
duce particles called pions (1r) and uncharged (0 superscript) AO hyperon:;, in

the following reactions:
k- + p* > A+ q°
K- +n—> A"+ o (4.35)

The charged particles intercict electrically with the fluid molecules to produce
- ) ) ) )

ionization which leads to observable bubbles. Since the AO and 7r( are un-
charged, their tracks in the chamber will not be visible. However, in a very short

time the Ao decays into a proton and a 7 meson, according to the reaction:
A = ptm” (4.36)

Since both pJr and 7~ are charged, their tracks will be visible in the chamber.

% would decay into uncnorged photons, which again, are not easily visible.

The T
A diagram representing a typical series of such events is shown in Figure 4.4.
A magnetic field applied to the chamber causes charged particles to move in

curved paths, for which the radius of curvature is proportional to the momenturn.

Figure 4.4. Diagram of a typical bubble chamber photograph of 4\0 decay, showing
p* and 7~ tracks.
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Here, the K~ tracks are easily identified, since all the K~ mesons have the same
curvature. At point A, a K~ disappears, according to one of the reactions given
in Equation (4.35). A A%is produced, which travels to B, where it decays. Since
the decay products are oppositely charged, the forces due to the magnetic field
are in opposite directions for the two particles, and their tracks will curve in
opposite directions.

The p+ and 7~ gradually lose their kinetic energies in collisions with the
molecules of the liquid irn the chamber, and will finally slow down and come to

rest. In Figure 4.5, this occurs at C and D. The track length, or range, for any

B == 13,000 gauss

o

Figure 45. Angles used in the calculation of the A° rest mass.
given particle moving in any particular medium is a well-defined function of the
particle’s initial momentum or energy. By measuring the range, the energy and
momentum may be measured whenever previously determined range versus
momentum curves are avuilable.

In this example, we shall apply the relativistic laws of conservation of energy
and momentum to the decay which occurs at B, coupled with range and direction
measurements of the pJr and w~ tracks, for the purpose of measuring the rest
mass My,s of the invisible AO particle. Referring to Figure 4.5, the dashed line

represents the path of the Ao, which we will assume has velocity ¥4 and energy,
2
Mg €
R
\/1_— VA/C

If the pion and proton are created initially with total energies E,r and E

E, (4.37)

re-
pr
spectively, then, by conservation of energy, we have
Ey, = E. + E (4.38)

Further, if 61{ and 0P are the initial angles at which the pion and proton are

projected, measured as indicated in the diagram, then, by conservation of mo-
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mentum,

px cos B, + p, cos 6, (4.39)

i

Pa
and

Q

i}

Px sin 0,, - pp sin 09 (4.40)

Dividing Equation (4.39) by Equation (4.38) and using p = mv = EV/CZ, we have

va _ Pac (Px€ cos B, + Pp€ cos Hp)

= (4.41)
L (E. + E)
The combination of Equations (4.37) and (4.38) leads to
2 vi
Mgy ¢& = (E,r + Ep) 1 — - (442)
C

All the quantities on the right side of Equations (4.41) and (4.42) may be ob-
tained directly or indirectly from the photographs; hence, from Equation (4,42),
the rest mass of the AO may be determined.

Figure 4.6 is a reproduction of a carefully selected bubble chamber photo-
graph, in which the Ao decay products travel in the plane of the picture. The
angles 0,.. and 0p may be (measured with ruler and protractor. To aid in the
measurements, dashed lines have been drawn on the phofogroph along the pc|fh
of the Ao and also along the paths of the 7 and p+, The measurement gives
HP = 177 and 0,, = 31”. Then cosf)p = 0.96 and cos 0,, = 0.86. Next, the
ranges may be measured by laying a flexible plastic rule along the curved paths
of the # and p +. The ranges measured in this way must be corrected because of
the fact that the reproduction is not lifesize. A centimeter calibration scale is
reproduced on the photograph for this correction. After applying the correction,

we find the ranges

R, = 245 cm and R, = 174 cm

These ranges may be converted into kinetic energies by using the tvvo range-
energy curves in Figure 4.7. Then the momenta may be obtained from the
momentum-energy equation:
T 7
VEL < mict VTT + 2mec’T
p (4.43)

= C = [4

From the curves, the kinetic energies are I, = 44 MeV and T, = 60 MeV for
the proton and pi meson, respectively. The rest energy of the proton is 938 MeV.

The proton momentum is, therefore, from Equation (4.22)

291 Mev

[

pe = [44(44 + 1876)]7 =

The 7~ rest energy is 139.6 MeVY; so its momentum is

pe = [60(60 + 279.2)]2 = 143 MeV
c
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Figure 4.7. Range curves for photographs in Figures 4.6 and 4.8.

From Equation (4.41),

va _ [ (143)(0.86) + (291)(0.96)]
¢ [(139.6 + 60) + (938 + 44)]=

0.340
Finally, from Equation (4.42), the A° rest energy is

mosc? = [ (139.6 + 60) + (938 + 44)][1-(034) =11 11 MeV

The accepted value for this rest energy is 1115 MeV. Similar analysis of other
photographs gives results which agree closely with the value, 11 15 MeV. This not
only provides a value for the lambda’s mass, but is o direct experimental veri-
fication of the validity of relativistic mechanics.

As one further check, one may test whether relativistic: momentum, in the direc-
tion transverse to the AO'S motion, is conserved according to Equation 4.20.
Using the measured values from the photograph,

0 = 143 sin 31°-291 sin 17~
0 = 74-85

which agrees as well as can be expected, to the accuracy with which the angles
were  measured.
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TRANSFORMATION PROPERTIES OF ENERGY
AND MOMENTUM

As @ preliminary to the discussion of the form-invariance of the laws of quantum
physics, we shall, in this section, derive the transformation laws connecting the
energies and momenta of a particle, measured by two relatively moving ob-
servers. In deriving these transformations, we shall need to use the time dilation
formula, which says that @ clock moving with speed v relative to an observer
appears to that observer to beat sow by the factor V' 1 — v?/c?. Consider, as

in Figure 4.8, three inertial systems So, R, and G. So is the system in which a

Particle at
restin So

Figure 4.8. Instantaneous rest system of o particle.
clock and a particle are at rest. Let —y be the velocity of R relative to SO: and
let —U, be the velocity of G relative to Sg. Then, corresponding to the proper
time interval dfy in So, there is a time interval df in 1?2, with

2
dto = de/l_— = (4.44)
4

Similarly, the corresponding time interval in G is dt’; where

%)
dty = dt' /1 — = (4.45)
Combining the last two r‘ESUhS, we have the equation,

(4.46)

In other words, the quantity div1l — UZ/C2 is form-invariant with respect to
Lorentz transformations. This result applies to any infinitesimal time interval be-
tween specific events along the path of a particle, measured by the two observ-
ers; u and u’, the velocities relative to the particle, can be in any arbitrary
directions relative to each other.

We may use the jnvariance of the interval, Equation (4.46), to obtain the
transformations for momentum and energy. Imagine a particle of rest mass My,

placed at the origin of 50. Then with our choice of velocity —U of R relative to
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So, the particle will have a velocify +y relative to R. Similarly, relative to G the
particle will have a velocity i-u*. We shall assume that G is moving relative to R,
with velocity v along the x",x axes, i.e. that G and R are related by the
Lorentz transformations given previously. Consider the y component of mo-

mentum of the particle measured by R. It is just

mou, Mo dy
Py = ————— Y/ (4.47)
V1= T V= Gt dt
Relative to G, the y componem of momentum is
m dy’
P, 0 Y (4.48)

= Y 2, 2
Vi1-u /¢ dt’
However, from the Lorentz transformation between R and G for the y coordinate,
dy’ = dy. Using this and the result in Equation (4,46), we find that the relation
between p, and p, is simply
!
Py=pv (4.49)

In a similar fashion, it is eas.ﬂy proved that the connection between z com-

ponents of momentum is
’

Pz = P: (4.50)
We next find the 1'ransformoﬁon for the x components of momentum. From
the definition of momentum,
f mo dX,
Px = Tﬁ—_ (4.51)
V1 = v dt
But using the invariance property in Equation (4.46) and the expression for dx’

which arises from the Lorentz transformation,

dx’ ==-—1—~«_-—~(dx -—vdt) (4.52)
N /] _ vz/cz
we obtain
, 1 modx mo
Px_ 7 — =, —— .3 (4.53)
‘\/T—v/c \.\/’I—u/c dt \/'T—u/c
In terms of Px and the energy f = m0c2/\/ 1 - U2C2, this reduces to
1
- vE (4.54)

=[Py 5

V1= vl 4
Thus, p: depends on both the energy and momentum of the particle measured in
the rest system R.

Lastly, to obtain the transformation for energy, we need the Lorentz trans-

formation for the time interval dt”:

dt = e [dt = L dx (4.55)
AR ’
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This combined with Equation (4.46) and the expression for energy in terms of

, / .
rest mass, E' = mocz/\/ 1 = v'%c? gives us

IE = mo df,
c? V11— uﬁ7c72 dt’
1 mg v 1 dx
- L ax (4.56)

) V1 - v’/c2 V1 - uz/c2

2 .
In terms of E/C and py, this reduces to

E_ 1V [E_ v elx (4.57)

! 2, 2 2
LRV I /c ¢ ¢?
To summarize, we have used the definitions of energy and momentum of a

. . . . — N 12,2
particle, and the invariance relation dt\/ 1 = uz/c2 = df’\/'l -y /¢, to-

gether with the Lorentz transformations, to derive the transformation formulas

2V - vt dt

for energy and momentum of a particle as measured by observers moving; with
relative speed v. There is a complete analogy between the Lorentz transforma-

tions of (x,y,z,1) and the transformations of (Px:Py/ Pz, E/cz), The transforma-

tions are:
M re oy plm—ee—fp. v E
V- vi/c? V- vi/e? C27
@y =y PC = Py
® 7z =z pr = p:

Z| - 1 v E’ 1 E
! — Y
( ) f <t - — X ; _ e w_.; -_— P,x

\/1‘——*/2/c2 ? c? \/1—_v2/c2 ¢t e
(4.58)

Just as the quantity <:2f2— )(Z—y2 -- z2 is an invariant (it is the equation

of a spherical light wave if set equal to zero), so is the quantity

a relativistic invariant as may be seen by finding cz(E'/cz)2 - piz—p;z
p;z using Equations (4.58—1,2,3,4). The invariant may be evaluated in the
rest frame of the particle where p = 0 and E = mocz. This gives again the

energy-momentum relation for particles of rest mass mg:
2 _ 2 2 2 4 ‘
E°= p%c"+ mpe (4.59)

or, for zero rest mass, E = pc.
As an example of the application of these energy-momentum formulae.. sup-
pose @ particle of rest mass mg has a speed of magnitude v in the negative x

direction, relative to R. Its energy in terms of mg and v, relative to G, is then
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given by Equation (4.28):

E' = ! [ Mo _v(_ MoV
V11— v’/c2 LV] - v2/c2 ¢? \/T~j v2/c2
2,2
= moc? —: *———'2; < (4.60)
— Vv /C

1.14 TRANSFORMATIONS FOR FREQUENCY AND WAVELENGTH

The reader is probably familiar with the decrease in apparent frequency of a
sound wave as a moving source approaches and then recedes. This phenomenon,
known as the D6pp/<er effect, also occurs when one observes the frequency of a
moving light source. We shall obtain the relativistic transformations relating the
frequencies and wavelengths of a light wave as measured by two observers,
G. and R., as G moves relative to R with a speed v along their mufuc|\|y parallel
X', x axes. These transformations wil provide a means of (comparing with energy
momentum transformations to see if the quantum relation, E = hV, is form-in-
variant under Lorentz transformations.

We imagine that observers G. and R., situated at their respective origins,
measure the frequency of a light wave with plane wave fronts by counfing the
number of fronts which pas:; their origins in some specified time interval. Let the
observed directions of propagation be denoted by angles 0’ (in G) and 0 (in R),
with respect to the positive x’ (in G), X (in R) axes. The situation is diagrammed

in Figure 4.9. In relating the frequencies p' (in G) and » (in RrR) of the wave, we

\

vt v

>

/

Ax'=N/eos ¢

X
9.  Measurement of frequency of a light wave by observers in relative motion.

2
|
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must take into account twoO effects: First, the clock at the origin of G beats slower
than the clocks in R, and second, the origin of G is moving with respect to that of
R so that at any given instant there may be wave fronts which have passed R,
but hove not yet reached G.

Suppose that starting at the instant } = t' = 0 when the origins coincide, G.
counts wove fronts for @ time t’, and that their observed frequency is v’; the
number of fronts which he counts is then '3, Similarly, beginning at the some
instant, let R. count wovefronts passing 0: he wil obtain iv. But fy is not equal to
f'V/, since there are fronts between the two origins which, in Figure 4.9, have
been counted by R. but not by G. The number of these fronts lying between 0
and 0’ may be found by dividing the distance between origins, vt, by the hori-
zontal distance Ax between fronts. From Figure 4.9, Ax = }\/COS 0= C/V cos 0,
so the odditionol number of fronts measured by R. is vf/Ax = yy} cos B/C, There-

fore,

coO
tv = t'y + vy

(41.61)

;ﬂ_ .
(o
solving for +'v', we obtain

v = (1= 2 cos |ty (4.62)

If f were equal to f, this would be identical to the Doppler effect in sound for
an observer moving relative to o source. In this expression, f refers to o time
measured in the rest frame R, both on a clock at 0 and on one at 0’; at the same
instant, f’ (on a single clock at 0’) is measured in the moving frame G. Hence, t
and t’ are related by the simple time dilation formula, t = V1 - V:z/cz.
So, substituting for t in the above equation ond cdnceling t’, we obtain

y = Uiz vfecos b) (4.63)

V1 = v
From this we may also obtain the transformation formula for wavelengths, since

VA= A = ¢

\ = 2‘__@;_":4“: (4.64)
(1 =v/c ¢os )

The relotion between the angles of propagation 0’ and 0 may be obtained by

noting that, since measurements of distance along the z, z’ axes are related by
!

Z = 1z, the two observers agree that the distances between two successive points
where the wavefronts intersect the z or z’ axes are equal: A~ = A. But from
Figure 4.9,

A = A sin ', N = Azsinf (4.65)
Hence,

(4.66)
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and from Equation (4.64),
sin @ 1 = vz/c"’

(1 =v/ccosb)

sin §' = (4.67)

The cosine of the angle '’ may be obtained by simplifying the trigonometric

formula:

cos 6 = VT I :‘/(1 — v/ccos )2 —sin2 (1 = v'/c?)

(1 — v/ccos 6)?

__/cos® § .= 2vjecos B + v¥/c2  cos § - vic 268
- (1\—V/CE036)2 - 1 = v/¢ cos f (4.68)

where the positive sign of the square root was chosen in order that cos 7' =
cos 0 in the special case v = 0, when the observers are not in relative motion
The relativistic transformation Equations (4.63), (4.64), (4.67) and (4.68) are

the principal results of this section; we shall now discuss a few applications.

.15 TRANSVERSE DOPPLER EFFECT

Suppose that to an observer in the rest system R, the direction of propagation is
perpendicular, or transverse. to the direction of motion of G. Then 6’ = 900, and

Equation (4.63) becomes

' v
L A— (4.69)
V1= vie?
This change in frequency is simple to understand solely as the result of the time
dilation effect. Since R. sees the waves propagating parallel to his z axis, each
wave that passes 0 wil simultaneously (to R.) pass 0’ (see Figure 4.10). Thus, both
observers agree on the number of wavefronts they have counted, but G,'s clocks
beat more slowly, so the frequency of the waves will appear higher to G., in
order that equal numbers of wavefronts be counted by both observers.
Suppose G. carries along a source of light which emits plane waves of natural
frequency v' = Vg. if R. then observes the light transversely, at 90” from the

direction of motion, the frequency will be given by

v = (41.70)
and since Xv = c, the wavelength wil be
A
A 0 (4.71)

TV

Thus the wavelength will appear to be increased, or red-shifted. The transverse

— v/t

Dappler effect could be used to obtain a direct experimental verification of the

time dilation predicted by special relativity; however, such experiments are
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Figure 4.10. Transverse Doppler effect

difficult, because it is hard to arrange matters so that an appreciable amount of

light of known proper frequency ¥¢ comes in at exactly 90”. Errors in angle will
yield corrections of order v/c, whereas the transverse effect is of order (v/c)?.

4.16 LONGITUDINAL DdPPLER EFFECT

In the longitudinal Doppler effect, the observed light is traveling parallel to the
direction of relative motion of the source. In this case, § = 0 or T. Suppose
again that G. carries along a light source of frequency Vg and that 0’ = 0. The
diagram, Figure 4.9, is drawn so that the light is propagating to the right
(6 = 0) in R, and hence we must imagine the source to be positioned far out on
the negative x’ axis and approaching the observer R. Therefore, substituting
6" = 0 in Equation (4.63), we obtain the expression for the frequency J observed
by R.:

(1 — v/c)
V1 = v/l
Or, since the factor (1 — v/c)/\/] iy 7§/3an be simplified by writing it as

1 —vje (1 — v/e)(1 — v/c) _ 1 —v/e (4.73)

VAR (1 — v/o)(1 + v/e) 1+ v/e

v (4.72)

we have

(4.74)




4.16 Longitudinal Doppler effect

for an approaching source of proper frequency V»g. Since Xv = c, the cor-
responding expression for wavelength is
1 =v/c
A= )\0 ——r—— (4'75)
1+ v/c
If the source is receding, we have instead, by reversing the sign of y (or

changing @ from 0 to a),

, —
v = vy /l_-_v/c‘ = Ao ]_+_V/_C (4.715)
1/ 1+ v/e 1 — v/e

This indicates that for a receding source, the apparent wavelength is redshifted.

If a source of natural wavelength 5000 Angstroms is moving with velocity
v = 4c/5 directly toward the observer, the observed wavelength would be
blueshifted and Equation (4.75) would apply. The observed wavelength would
be

A = (5000 A)if---- 1 —0.8 5000 A

= = 1667A
1 + 08 3

The longitudinal Doppler effect can be used to interpret the spectra of light
received from distant galaxies. Bright spectral lines from these galaxies aqre
identified by comparison with spectra of the elements, produced on earth. The
identification shows the lines are systematically redshifted. For nearby galaxies
whose distances can be measured by observing cepheid variable stars, the frac-
tional redshift AA/\ is directly proportional to the distance. This is expressed
in  Hubble’s relation,

AA .
22 L Hy (4.77)
A
where H, Hubble’s (constant, is approximately 75 km/sec per ]06 parsecs.
(1 parsec = 3.26 light-years.)

TABLE 4.3 Redshifts of Some Quasi-Stellar Objects (Quasars,
by Kohn and Palmer, Harvard Univ. Press, 19'67).

Catalogue Number Redshift z = A)\/)\ Reces;m:n V\//ilomty,
3¢ 2738 0.158 0.146
3¢ 249.1 0.311 0.264
3c 345 0.595 0.436
3¢ 48 0.367 0.303
3¢ 279 0.536 0.405
1116+12 21 la 0.813
PHL 256 0.131 0.122
PHL 938 1.93 0.791

BSO 1 1.24 0.668

103



104 Relativistic mechanics and dynamics

Recent observations of quasars, for which no independent distance measure-
ments are available, have revealed enormous redshifts, indicating that the
objects from which this light was emitted may be receding from our galaxy at
speeds of over 80% of the speed of light. Some of these recent observations are
given in Table 4.3. The redshifts, if interpreted as D6pp|er shifts, imply that the
entire visible universe is expanding and hence that at some distant time in the
past all the matter in the universe must have been concentrated in one region.
The gOI|aC1'iC redshifts are the primary experimental evidence on which the

big bang theory of the origin of the universe is based.

summary

TRANSFORMATIONS OF ENERGY AND MOMENTUM

The transformation formulae for energy and momentum of a particle E’, p' as
observed from a system of reference moving with speed v along the x, x’ axes
relative to an observer who measures the values E, p for the same particle, are
given by

1 E )
:\/'I—:pr-—vc_z Py = Py

E’ 1 <E v ,
P — - - _px z = z
C2 1 — Vz/cz c? c? > P P

The four quantities p., Py: Pz, E/Cz, are thus analogous to X,y,Z and t.

TRANSFORMATIONS FOR FREQUENCY AND WAVELENGTH

The transformation formulae for frequency 1/', wavelength A and angle of
propagation 19° of a light wave, observed from a system of reference moving
with speed v along the x,x’ axes, relative to an observer who measures the
values v, )\, and f for the same wave, are

o Mimviccos §)

v = —

V1 - vi/c?
AV - v2/c?

No= (1 v/c cos 6)

cos ' _(cos ¢_-- vic)_

(1 —v/c cos b)
SinB,z_sin 0}/'.|—--V2/C2

(1 - v/c cos f)



Problems

since E= hy and p = h/h for light, these are identical to the transformation

equations for energy and momentum of a particle of zero rest mass.

DOPPLER erFecT

A light source of natural frequency Vg (wavelength )\O) will have its frequency
shifted when measured by on observer moving with respect to the source. If the
light is observed at 90” from the direction of motion of the source, then the
frequency is redshifted due to time dilation:

h_v A= Ao

v =V - = —
OV ¢ V1 - v/l

If the source is receding from the observer with speed v and the light is observed

parallel to v, then

/1 = v/c ]+Z

- —— Y N =
y Vol//]+v/c V1= vk

For an approaching source, the sign of v is reversed.

problems

1. Suppose a particle with rest mass mg is initially at rest at X = 0. If it is acted on
by a constant force F in the x direction, find x as a function of time. Check to see
if this gives the same as the nonrelativistic equations given for small velocity, i.e.
small time. Also show that the speed approaches c as { approaches infinity
2 N i A
Answer:  x = (c‘mo/F) V'1 ¥ (Ft/mgc) = 1].
2. Suppose a force Facts on ¢ particle in the same direction as the velocity. Show that

the power expended by the force is mov(dv/dt)/( 1 = v2/c2)3/2, and hence show that
the energy of the particle is mcz.
Show that dE/dp := v, the speed of the particle.

4. An electron of mass mg = 9.1 x 'IO_:” kg and a proton of mass Mg = 1.6'7 x
1077 kg are each accelerated from rest through a total potential energy difference
of 1.6 x 107" | What is the increase in mass of each particle? What is the frac-
tional increase in m@ss of each particle? What is the final speed of each?

Answer: 178 x 1072 kg; 1.78 x 1078 kg; 196 mq; 0.107 Mg, 0.999987 ~;
043 c.

5. Suppose 1.00 cubic kilometer of water at 0°C were changed to ice by exiracting
heat. How much would the mass change? (Fr‘di of fusion == 80 kcql/kg = 3835 x
10° i7kg)

Answer: 3.73 Kkg.

6. The energy radiated from the sun in the form of neutrinos has the intensity 0.12
i/cmz/min at the eorth's surface. The earth-sun distance is 1.5 x 10% km ond the
sun’s mass is 2.0 x 10%° kg. Calculate the fractional loss in mass from the sun in 10'°
years (age of the universe), from the radiation of neutrinos.

Answer: 9.9 x 107¢,
7. An oil-powered ship obtains energy at the rate of 4 x 10” ca|/|b from its fuel. A
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9.

10.

11.

12.

13.

14.

15.

nuclear-powered ship obtains energy by converting about 0.0003% of its fuel from
moss to energy. For o given moss of fuel, calculate the ratio of the distances the two
ships should be able to travel.

Answer: Nuclear-powered ship travels 7,320 times Qs far.

In @ certain kind of instrument used for focusing o beam of high energy particles onto
o point, the maximum Kkinetic energy for which the instrument works is T = 1.22
times the rest energy. ‘What speed do particles of this kinetic energy have?

Answer:  2.68 x 10% m/sec.

Show that in terms of the kinetic energy, T, the magnitude of the momentum is
pe= "V T2 4 2Tm0c2, where mg is the rest mass.

Find the correction terms of order v‘/c4 to the kinetic energy expression 73 mov2 in
the correspondence limit.

Answer: %m°C2 (v‘/c‘).

If o particle has @ momentum of 5.60 X 1 0" kg-m/sec and a kinetic energy of
752 x 107" i, find its speed. Find its rest mass in kg.

Answer: 2.24 x 'IOB m/sec; 1.67 x 1077 kg.

An electron has a kinetic energy of 1.6 X 101 |, and is incident on a proton at
rest in the laboratory. The center of momentum frame, an inertial frame in which the
total momentum of both particles is zero, is moving with what speed relative to the
laboratory? The rest moss of the electron is 9.11 X 107 kg, and that of the (proton
is 1.67 x 107 kg.

Answer:  4.54 x 10° m/sec.

Using the equations for transformation of velocity components, show that when
532 = p262 + m%c‘, for on inertial system in which p has the components p,, Py, Pz
and the energy is E, then in another system moving at velocity vy in the positive x
direction relative to the first, the momentum and energy are p, = (p, - vE/cz)/
V1 = V¥t p) = pypi=ps,and E'= (B vp, )/ VI v Note the
similarity to the x, y, z, t transformations.

Using the Lorentz transformations for coordinates, show that
dr = Vdt? — (dx? +dy?+ dz?)/c? = dtV 1 — vc?

is invariant under lorentz transformations. Here dx, dy, dz ore infinitesimal dis-

placements of a particle and v is the speed of an inertial system relative to the rest
frame of the particle. Show that the momentum and E/c = V p° + moc2 are given
by p = mo dr/d7, E/c = my(cdt)/d7. Thus, since d7 is an invariant, the momentum
and E/c transform like ¢ and ct. This is an olternate way of working Problem 13.

Suppose @ particle of rest moss mg, moving in the positive x direction, has o total
energy (rest plus Kkinetic) of E] It hits o similar particle (rest moss mo), which
is at rest. Express the total momentum p, ond the total energy of the two porticles
in terms of E, and mocz, Using the results of Problem 13, find, in terms of
El and mocz,the speed v of the system in which the momentum is zero, i.e.
P ="u.AIsOTINCE in terms of Ey, moc2, and v, Eliminate v to show thal E' =

\/2(5‘ + mgcz)(mocz)_ This total energy in the center of momentum system is im-
portant in studying nuclear reactions.
Answer: \/(?1 Jey = mgc By + motiv= ¢V EX mic*/(E, + m(,cz).

In the following collision problems, use the facts that total energy and total momentum

are conserved. By squaring the energy equation twice, quantities like \/p2 + m0C2
con be eliminated. An alternative procedure would be to tronsform to the center of

momentum system gs indicated in Problem 15. The solution is much simpler in that system.
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A particle with speed v hits another at rest. If both have rest mass mg, and the final
velocities are along the same straight line, what are the final velocities?

Answer: {; v,

A particle with momentum p and rest mass my hits another at rest with mass m,.

If the final velocities are along the same straight line, what are the final momenta’?

Ny
Answer: 2pm2--n_'2_+ {p/c)” + mj

i+ mi+ 2maV /0 af

7

2 2
my — mj

“nl md o 2meV ) ]
Two particles have momenta p and —p. They collide elastically. What are the magni-
tudes of the final momenta, and what is the angle between them?
Answer: p, p, 180” (this is the center of momentum frame for these particles).
Two particles of rest masses m | and my have momenta p; and P2, respectively. If the
final velocities after an elastic collision are along the same straight line, what is the
final momentum of particle 1?

Answer:

2 2,2 2 2 G
pl = pi{mi —my)c” 2po(—pi1pa + mijc” + \/p? + mic? \/;3 + m_;§c2)
| =
Z 7 2
mic? + mic? = 2p1p; + 2Vp] + mic® Vp} + mic?

Two particles with rest masses m; and m, have momenta p; and p3z, respectively,
along the same straight line. What is the final speed of the combination if they stick
together on collision? What is the rest mass of the combination? (It is not m; + m, )
Answer:  ¢(py + p;)/(‘v/pf + m?.:2 + \/pg + mgcz);

Vil +mi- - 2Apipa- Vit mic? Ve mid)

Two particles of the same rest mass, Mg, collide elastically. One particle was

initially at rest, and the other had momentum p. If the final velocities are the same
in magnitude, what is the angle between these velocities? Nonrelativistically, this
would be 90”.

/2 72
-1 N p© 4+ moect — mgc

Vp? + mic? + 3mgc

In Figure 4.1 1 is given another bubble chamber photograph of the production and

decay of a Ao hyperon. Using the method illustrated in the text, find the rest mass
of the AO from this photograph.

Answer: 0 = cos

Verify that light moving parallel to the y axis in one inertial system goes at the angle

relative to the y’ axis in a system moving with velocity v along the x axis relative
to the first system. In the first system, E, = E, = B, = B, =0, B, = E,/c = 0.
The transformation of the f eld components perpendicular to v is:

(E_+ v xB g o Bi= v X E/c?)
——— 1= — =
\//‘1 - v2/c2 w - v"’/c2

s
E_LZ
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Find what the transformation of the E components parallel to v must be for the |ight
wave to be transverse in the second system. If E, = E, = B, = B, = o
B, = E./c % 0, find how the B component parallel to v transforms.

Answer: Ej = Ej, B} =8).

A light source emits light in its rest system of 4000 Angstroms wavelength at the

Y

violet end of the visible spectrum. If in a second system the light goes perpendicular
to the relative velocity and has a wavelength of 7000 Angstroms at the red end of the
visible spectrum, what is the relative velocity?

Answer:  2.46 x 10°% m/sec.

Due to the sun’s rotation, ¢ point at the surface of the sun on its equator has a speed
relative to the certer of 1 .85 km/sec. If an atom at rest emits light of wavelength
5400 Angstroms, what is the wavelength difference for this light emitted from op-
posite edges of the sun’s equator as seen from the earth?

Answer: 0.0666  Angstrom.

light at the natural wavelength 6328 Angstroms is emitted from a source which is
approaching at 0.45 the speed of light. Calculate the observed wavelength and
frequency. If the light source were receding, what would be the observed energy
of single photons received from the source?

Answer: A = 3897 Angstroms; p = 7.70 x 10" sec™; 193 x 107" |
121 eV

Light of wavelength 5000 Angstroms from a flashlight you hold hits a mirror moving
away from you at 0.8¢c. What is the frequency of the light reflected back to you?
Answer:  6.67 x 10" sec”’

The phase of a plane sinusoidal wave, k.x + k,y + k;z — wt with ¢ = w/k =
w/Vk: + kf + k2, is invariant under a Lorentz transformation. A wavecrest in
one system must look like a wavecrest in another system. Show that this is sg if
ke, k,. k,, w/c transform under a Lorentz transformation just as x, y, 1, ¢t do. Since
k = 2w/A, the magnitude of the momentum of a photon is kh/27, and likewise the
energy is hy = wh/21r. Verify that these are consistent with the transformation
equations for momentum and energy.

29. Consider two twins R. and G., and let G. travel with speed v out towards a distant

light source, for a total distance L as observed by R. G. then returns along the same
path to his starting point with speed v. Suppose both G. and R. observe light of a
definite frequency coming from the distance source. Use the equations of the longi-
tudinal D3ppler effect, and the fact that at the end of the trip both G. and R. will
have counted the same total number of wavecrests, to show that the travelling twin

is younger by the factor \/V — v2/c2.
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The classical electrodynamics of Faraday, Ampere and Maxwell-as expressed
in Maxwell's equations--was successful in predicting the existence of electro-
magnetic oscillations, and led to many useful applications, culminating in the
invention of radio in 18968, By the early part of the twentieth century, however,
other electromagnetic phenomena had been discovered, which could not be ade-
quately explained by the classical theory. Among the most significant of these
phenomena were the emission of electrons from a metal surface when irradiated
by light (photoelectric effect), the change of wavelength of light scattered by free
electrons (the Compton effect), the discreteness of optical spectra emitted by hot
gases, and the energy distribution with frequency of radiation emitted by hot
bodies.

An important prediction of the classical theory was that an accelerated charge
should always emit radiation. If an atom is pictured as a heavy positively
charged core with an electron revolving in some orbit about the core, then the
electron should emit energy because it is continually being accelerated toward
the core by the Coulomb attraction. This energy loss should cause the electron
to spiral in toward the core and eventually collide with it in about 109 seconds.
Thus this classical model contradicted the fact that an atom can be a stable
physical system. Further, the theory predicted that all frequencies should be
present in the emitted radiation, corresponding to the fact that all rotation fre-
guencies are possible in the classical orbits. This is in contrast to the observed
fact that often a hot gas emits light only at a discrete set of frequencies.

Another important consequence of the classical theory was that the intensity
of energy transported by a light wave through free space is proportional to the
square of the amplitude of the oscillating electric (or magnetic) field. Also,
these electric and magnetic field amplitudes could have continuous arbitrary
numerical values, not dependent on the frequency. This led to serious difficulties
in explaining the observed properties of the electromagnetic radiation contained
in a cavity inside a hot body. The classical theory of this “black-body” radia-
tion assumed that the radiation inside a large cavity consisted of standing elec-
tromagnetic waves with a continuous distribution of energies. The resulting
theoretical calculations gave a distribution of energy with frequency which dis-
agreed with experiment, except at very low frequencies.



5.1 Energy transformation for particles of zero rest mass

Max Planck was the first to give an acceptable quantitative explanation of
black-body radiation. Instead of assuming that the distribution of energies of the
standing waves is continuous, he assumed that the waves could have only dis-
crete energies, differing in amount by integral multiples of hl’, where V is the fre-
quency and h is a constant having the value 6.63 x 1073 joules-seconds. The
result of qunck's theoretical calculation agreed with experiment in all respects.

Thus, when electromagneti,; waves of frequency V are emitted or absorbedl b\y
matter, the energy has to be emitted or absorbed in amounts E = hV. Si\nce,
when a particle is emitted or absorbed by matter, a definite discrete amount of
energy is transferred, a light wave appears in this respect to act very |much |||<e
a particle, when interacting wifh matter. When propagating from one point 1o
another, however, it must still behave like a wave because it is capab»le of ex-
hibiting interference and diffraction. The standing waves of frequency ¥ inside
a cavity can be thought of as consisting of a number of quanta, or photons, each
of energy hV‘ When energy h¥ is emitted by one wall of the cavity, the number
of photons of this frequency inside the cavity will increase by unity. Photons of
many different frequencies ¢¢ifi be present in the cavity. The subsequent absorp-
tion of energy hy by another wall of the cavity can, in some respects,, be con-
sidered equivalent to the passage of a particle (a photon) from one wall to an-
other. The reality of this particle-like picture of the states of the electromagnetic
field has been verified in many experiments.

In this chapter we shall begi\n by examining, from the point of view of special
relativity, the hypothesis that light waves are particles whi(:h carry energy in dis-
crete amounts E = hy, If the |‘e|qﬁon E = hy is to be a vald physical law, it fol-
lows from the first postulate of relativity that it must be valid in any inertial
frame. The equations of re|a‘ﬁvify tell us how to relate space and time medsure-
ments, and hence also frequency, wavelength, energy, and momentum measure-
ments, made by observers in relative motion. We may then apply the relativistic
transformations to the Planck relation E = hu, to see if it is form-invariant with

respect to Lorentz transformations.

».1 ENERGY TRANSFORMATION FOR PARTICLES OF

ZERO REST MASS

In the previous chapter, transformation equations for energy and momentum of
particles were obtained. We now wish to investigate the possibility that, ac-
cording to Plonck's hypothesis, a light wave can be considered to act like g
particle which, because the particle has speed c, must have zero rest mass. This
may be seen from the comparisyon of the two alternate expressions for energy
moc2

V= vie

In order that the energy and rnomentum be non-vanishing for my = 0, we must

E = V(p)T + (mgc?)? = (5.1)

have v = ¢ in which case the latter expression becomes indeterminate:
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2

m,c zero
E= o =27 (5.2)
V- v2/c? zero
But then the former expression reduces to simply E = pc.

The relation E = pc is entirely consistent with the classical electromagnetic

theory of a plane electromagnetic wave, where

(Energy density) = ¢ x (Momentum density) (5.3)
or, in 0 given volume, E = pc for electromagnetic waves.
Since for zero rest moss particles we have E = pc, then p, = p cos (9 =

E cos 9/C, where @ is the direction of travel of the particle with respect to the x
axis in R. Also, in the G coordinate system, p," = E’ cos 0'/C. Substituting into

the transformation equation (Equation 4.57), we get

E _ (E/c){(1= v /c cosB)

S — (5.4)
c? V11— v2e?
Note the similarity to the transformation equation for frequency,
v(1 = v/ccost
poo 20 2 v/ccost) (5.5)

B V1= vi?

5.2 FORM-INVARIANCE OF E = hy

In fact, it is at once clear that if Planck's equation E= hviora single photon is
valid in the system R, then upon using the transformations (5.4) and (5.5), the cor-
responding relation in the G system must be E' = hl/’. The Planck equation is
thus re\|01ivisﬁco||y invariant, provided the constant h has the same numerical
value in all inertial frames.

Furthermore, if the energy is a function only of frequency, the relation E =
hv is the only possible relation between energy and frequency which is rela-
tivistically invariant. Suppose, for example, that Planck had proposed E-= hv",
where n is some exponent not equal to unity. This relation would not be rela-
tivisticolly form-invariant, and therefore could not be a valid physical law, as it
leads to the relation

n—-1

1 — v/c cos @
V1= v

in the other reference frame. Thus, it is a remarkable fact that the only possible

E=h (») (5.6)

relativistically invariant relation between energy and frequency is precisely the
relation which enabled Planck to explain all the properties of black-body radia-
tion. Further, if £ = hV, there is a definite relation between momentum and
wavelength, which can be derived by noting that E = hyv = pcC, and Av = c.

Solving for p in terms of the wavelength )\,

=—=—-== G.7)



5.3

5.3 the Duane-Hunt law

Since this relation between momentum and wavelength is equivalent to £ = h‘V,
it is also form-invariant,

We may conclude that, if there exists a discrete energy related only to fre-
quency for light,, which is considered to be a particle of zero rest mass, then to be
relativistically invariant, the 0|n|y possible relation is E-= hl/, where h is a uni-
versal constant. Also, the only possible relation between momentum and wave-
length has to be p = h)\_ Thus:

E = hv = pc p = h/A for photons (5.8)

These relations for a single photon state the relationship of momentum and en-
ergy to wavelength and frequency under the assumption that light transports
energy and momentum in discrete amounts. If there are n photons, the expres-
sions for E and p should each be multiplied by n. Note that the expression for
energy does not contain the amplitude of the electromagnetic field oscillations.
On the other hand, in classical electromagnetic theory the energy is prorporﬁonol
to the squared amplitude of the fields. Therefore, the physical meaning of the
squared amplitwde will have to be reconsidered.

The relations, Equation (5_8), are subject to verification by experiment. In the
following sections, we shall consider experiments in which the quantization of
energy carried by photons is important, and in which the value of h can be de-
termined independently. The value of h obtained from black-body radiation

experiments wash = 6.547 X 10™* joules-seconds.

THE DUANE-HUNT LAW

One phenomennn which may be explained by using the quantum relation f =
hv is the short-wavelength cutoff (high-frequency cutoff) of the continuous x-ray

spectrum. Figure 5.1 represents a typical x-ray tube, consisting mainly of a hot

hy

/ Cathode
r

Figure 5.1. Production of x rays by stopping fast electrons in dense materials.

113



Quantum properties of Iigh'

cathode which emits electrons, and a source of potential which can accelerate
the electrons from the cathode up to many thousands of electron volts kinetic
energy. The electrons then strike a dense target, usually made of tungsten or
molybdenum, and are broughf suddenly to rest, i.e. they are decelerated. Ac-
cording to classical theory, such a decelerated charge should emit radiation, and
this is what is observed experimentally. If the accelerating potential V is upwards
of 10,000 volts, then the frequencies of emitted radiation lie in the x-ray region.
suppose [(A)dA is the amount of energy emitted with wavelengths in the
range from )\ to }\ + d)\ This intensity I(M is a quantity which can be ob-

served experimentally; a typical set of experirnental results is given in Figure 5.2,
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Figure 5.2. Intensity distribution of x rays produced at different accelerating voltages.

in which [ (A) is plotted as a function of A, Note that as the accelerating voltage
V is increased, there is a general increase in the intensity of x rays produced, and
also that there is for each V a minimum wavelength (or maximum frequency)
emitted. This can be understood as follows: We assume that the x rays are
radiated discontinuously in the form of quanta of energy hV when the electron
comes to a stop. Some electrons may emit many quanta, but it is possible that
an electron is stopped so suddenly that all its kinetic energy goes into a single

quantum of energy hl/mm.This V e Would be the maximum frequency of a

X
quantum which could be (emitted. The electron is initially accelerated and is given
kinetic energy by passage through a difference of potential V, so the kinetic
energy it gains there will be T=eV. By conservation of energy, if in the collision

all this is given to a single quantum of frequency Vg, then

hvpe = eV (5.9)
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This equation is called the Duane-Hunt law. It can be checked against the
experimental data given in Figure 5.2. From the graph, which is plotted in terms

of wavelength, the minimum wavelengths can be read off for given occeleraiing

Potential. In terms of ¥, Amin = , SO in terms of >\min the constant h could be

max

expressed as

h = Zmn (5.10)

For example, at V = 40,000 volts, Ay, from the graph is 0.31 Angstroms. This
gives, using e = 1.6 x 107" coul., a value for h: h = 6.61 x 107 isec. sim-
ilarly, other values for h can be obtained from the data of Figure 5.2. The results
are given in Table 5.1; the values all agree reasonably well with each other and

with the value of h determined from black-body radiation experiments.

TABLE 5.1 Duane-Hunt Law

Y, A

(volts) (Ang;t"r’é)ms) h = evx"‘i"/c
20,000 .62 6.61 x 107> j-sec.
25,000 49 6.53 x 107 *j-sec.
30,000 .405 6.48 x 'IO_“i-sec.
35,000 .35 6.35 x 107 isec.
40,000 31 6.61 x 107 isec.
50,000 .255 6.80 x 1073 i-sec.

6.56 X103 j-sec. (average)

.4 PHOTOELECTRIC EFFECT

Historically the first opplicution of Planck’s equation E = hv to another phe-

nomenon was made by Einstein, when he showed how the photoelectric effect

Metal

Figure 3.3. Photoelectric Effect: A single incident photon of energy hy con cause on
electron to be ejected from a metal surface if the frequency is sufﬁcienfly high.
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may be explained. In the photoelectric effect, light is allowed to fall on a metal
surface as illustrated in Figure 5.3, and electrons of various kinetic energies are
then ejected from the surface due to absorption of light energy. One may
measure the kinetic energies T of the ejected electrons, and the numbers of
ejected electrons, as functions of both the frequency, and the intensity, of the
incident light. Five important features of this effect could not be explained by
the classical theory. We shall consider these features one by one, and show how
they rnay be explained using E = hv and the concept of the photon, or quantum
of light.

Emission from a given surface does not occur unless the frequency of the light is
greater than a certain critical frequency denoted by v., which is independent of

the intensity of the incident light.

That is, no matter how intense the light is, no electrons will come off unless
the frequency exceeds v,. This is difficult to understand classically, because the
more intense the light is, the more energy should be available to make the elec-
trons come off.

Electrons are normally kept from flying off the surface of a metal by the
Coulomb attractions between the electrons and the positive ions. It takes & cer-
tain amount of energy to overcome this attraction at room temperature, and
from experiments on thermionic emission these energies can be measured. The
minimum energy required to remove one electron is defined os the work function
P of the metal. Typical values of the work function are given in Table 5.2. These
work functions are typically of the order of a few electron volts. These are only
the minimum energies required to remove an electron from a metallic surface.
It migihi actually require more energy than th to remove an electron, because
an electron far down inside the metal might have to collide with several ob-
stacles, thus losing energy, before it could get out. Also, some electrons inside
the metal have less kinetic energy than others to begin with.

TABLE 5.2 Work Functions for Some Typical Metals

Element Work Function
Molybdenum 4.20 eV
Nickel 5.03 eV
Silver 4.73 eV
Tungsten 4.54 eV
Zinc 4.30 eV

Suppose an electron absorbs one photon,, which gives it just enough energy
to overcome the work function and escape. The energy of this photon is E = hV.
In terms of <I>, hv = &1t hy were less than (b, the electron could not escape.
Therefore, there is a critical frequency, ¥, determined by V. = ‘b/h, such that

for lesser frequencies, an electron cannot escape by absorbing a photon. For
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example, the critical frequency for Zinc is

®  ex430 eV 160 x 107" coul x 4.30 eV

Vc="'""'—

h h 6.63 x 1073 j-sec
1

= 1.04 x 10" sec”

(Note that work functions in the table are given in units of electron volts.)

The incident light beam, ot a frequency lower than the critical frequency,
could be made more intense by increasing the number of quanta in the beam.
So if n quanta per unit area per unit time fall on the metal, the intensity is given
in terms of n and » by | = nhr. Since the light is absorbed in quanta of amount
hv, and not nhu, increasing the intensity of the beam will not cause electrons to
come off in this case.

Suppose that we consider next the case of incident frequencies greater than
the critical frequency. Then electrons can come off when quanta are absorbed.
In general, the electrons will come off with a distribution of energies because of
losses due to collisions inside the metal, and so forth. So we shall consider only
those electrons coming off with maximum possible kinetic energies, T, . . The en-
ergy absorbed from the light, hy, goes into overcoming the work function and in
giving kinetic energy to the electron. Thus, by conservation of energy,

hy =T, + @ (5.11)
This is known as the Einstein photoelectric equation.

If & =2.04 eV and visible light of wavelength A\ = 4000 Angstroms is used, then
the maximum kinetic energies are

he .
Twax = hv — & = — — &
max 4 A
_ (6.63 X 107 j-sec) x (3 x 10% m/sec) —2.04 &V
4 x107 mx@6 x10 " j/eV) )

1.07 eV

For such problems, since T, is a few electron volts, while the rest energy of an
electron is 510,000 eV, we can use the approximate nonrelativistic expression
for kinetic energy, T= % mow/?, to obtain the maximum electron velocity. Then
the photoelectric equation can be written in the form:

T,. = % movl, = hv - ® (5.12)

T

max

does not depend on the intensity of the incident light.

Classically, it would seen that the more energy contained in the incident light,
the more a particular electron could absorb. However, the photoelectric equation
does not predict any dependence of T,,, on the intensity, | = nhu.
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Toax increases with increasing frequency of light.

This follows directly from the photoelectric equation. If T,,m is measuredl and
plotted as a function of frequency, the slope of the curve should be equal to h.
The intercept on the frequency axis should be (I’/h. The energy T,m, may be
measured by placing an electrode near the metal surface and applying to it a

negative potential, -V, with respect to the metal. This is illustrated in Figure 5.4.

hy

B

(1L Ol

Figure 5.4. Rough diagram of apparatus for measurement of h/e.
This stopping potential V is increased unti no current is collected by the electrode,
that is, until V is just large enough to turn back electrons with the energy Tmm.
Then the change in potential energy as the electron travels from the metal surface
so eV = hy — &, and if Vis

to the electrode is just eV, and is equal to T,m,x.
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Figure 5.5. Graph of stopping potential vs. frequency.
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measured and plotted as a function of frequency, the slope of the curve should
be equal to hle. In Figure 551 are given some experimental data for the measure-
ment of V as a function of frequency for a particular metal surface. From the
data, using the knowr value of the electronic charge e, Planck’s constant can be
independently determined. The value obtained from the graph is h = 6.65 X
10" j-sec.

The number of photoelectrons emitted per second is proportional to the intensity

of the light.

Classically, this is consistent with conservation of energy, but it is not clear why
the increase in available energy as the intensity is increased shouldn’t increase
T

sorbed, only one electron can be given off. If the intensity is then doubled, keep-

mox - 1T, however, the intensity is nhV, with ¥ > v., then for every photon ab-
ing the frequency fixed, the number n of quanta is doubled, so that the number
of electrons given off should also be doubled. Thus, the quantum theory explains

this fact completely.

1.5 Emission of photoelectrons may occur immediately, regardless of the intensity

of the light.

This means that if the intensity is made smaller and smaller, then no matter
how small it is, immediately after the light is turned on, some electrons may come
‘off. It is not too difficult to arrange for the intensity fc¢ be so low that it should
take several hours for 5.0 eV of energy to be absorbecd by an atom in the metal
--that is, provided the intensity is proportional to the square of the amplitude.
However, on the basis of the cluantum picture, if there is any light at all, there
will have to be at least one quantum present, so an electron could absorb it and
leave the surface.

Suppose, for exomple, that the intensity were so |ow that 5.0 eV of energy
every ten minutes were incident on a surface of work function 2.5 eV, ond that
the frequency of the incident light were such that hv = 5.0 eV, Then, on the
average, six electrons would come off every hour; but it turns out to be impos-
sible to predict exactly when these electrons would come off. They would do so at
[random times, rather than regularly every ten minutes. Hence, only the prob-
ability of ejecting an electron at a given instant can be predicted. This prob-
Gbilify can be correc1‘|y calculated using the classical formula, which says the
square of the amplitude is proportional to the intensity. The intensity is related,
on the average, to the number of quanta present. This will be discussed below in

detail.

COMPTON EFFECT

If light waves strike a free electron, as in Figure 5.6, then, according to classical
electrodynamics, the electric field vector should cause the electron to oscillate.

Hence the electron wil be accelerated, and should emit radiation at the same fre-
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] ,7W0vefronts

s~

e

——

Figure %.6. Electric field in an electromagnetic wave striking an electron causes the elec-
tron to accelerate. Classically, radiation of the same frequency should be emitted, but a
shift of wavelength with angle is observed.

quency as that of the incident light. However, experimental observations show
that the light reradiated by the electron is changed in frequency (and so in wave-
length). For example, considering only the light scattered at 90” from the inci-
dent direction, experiments show that the change of wavelength of the light is
A}\ = 0.024 Angstrom. This, of course, is a very small shift in wavelength. In
order to observe this shift, it is necessary to do the experiment with x rays.

The effect can be understood as the absorption of a photon of energy, E -
hy, and momentum, p= h/h, a subsequent re-emission of a photon of different

energy, E’ = hl/', and momentum, p' = h/X’, with a recoil of the electron from

hy', h/ N

\

9
E=hy ., p=h/\ \L
e

mc’, mv

Figure 5.7. Diagram of collision between a photon of energy E= hv and a free electron.
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the state in which it was initially at rest-i.e. a relativistic collision between two

particles. We shall treat the electron as @ relativistic particle which, after the

collision, has velocity ¥ at on angle ¢ relative to the incident direction. The rela-

tivistic mass m is then

Mo
m = \/]:2/2 (5.13)
- v/

Let us write down the conservation of energy equation.
before the collision the total energy is that of the photon, hll, and that of the
2. After the collision, the new photon has an energy hV', and

Referring to Figure 5.7,

electron at rest, MgC
the energy of the electron is rm:2. So the law of conservation of energy is

hv + mge? = hv'+ mc? (5.14)

or since ¥ = ¢/\ and y' = c/)\/‘

h/N, N

h/\
Figure 5.8. Momentum conservation diagrams for photon-free electron collision.
h h
-+ mec = — + mc (5.15)
\ A

Next, we write down the conservation of momentum equations. The relation-
ships between the momentum vectors are diagrammed in Figure 5.8. The initial

momentum is that of the incident photon only, since the electron is initially at rest.

This initial momentum is equal to the vector sum of the final momenta, of magni-

tudes h/}\’ for the photon and mv for the electron. The x component of mo-

mentum is conserved. This gives the conservation law,

"o D os B4 myocos 0] (5.16)

AN

For conservation of they component of momentum, we have
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0 = % sin - mv sin ¢ (5.17)

These equations can b‘e manipulated in various ways to yield useful informa-
tion about the collision process. Note that the equations combine relativistic
mechanics for the electron, with the equations E-= pc = hv tor the photons. For
our purposes, we wish to calculate the wavelength A" of the scattered photon in
terms of A and the angle 0, through which the photon is scattered. This means
that in the above three equations, (5.15, 5.16, and 5.17), we must eliminate the
variables ¢ and v. There are several ways to proceed with the algebra; the re-
sult is given in Equation (5.23). The quickest way to eliminate the angle ¢ is to
use the vector triangle in Figure 5.8, and Gpply the law of cosines, which ir this

case gives us

2

p? - my - b\2+ B h \_2 2h2

—— cos 0 (5.1 8)
1
oA Ao AN
The final momentum, p, of the electron in Equation (5.18) can be eliminated by
means of the relation E?= p2c2+ mgc‘ or p2= Ez/c2 - mgcz.Then, since

2
E = mc’,

- _ 2.2 2.2
p =my = mc = mpc (5.19)

. . 2 I .
We may now obtain an expression for p°In terms of the initial and final wave-

lengths, X,X’. Write the conservation of energy equation (5.15) as

me = moc + 3 - }'\‘ (5.20)

Squaring this last equation and solving for m‘cz had mf,cz, we ge1

2.2 2 2 h h h h

m%c® = myc’ = 2mgc { - — + — - — (5.21)

AN AN

Thus, combination of equations (5.19) and (5.21) gives us

h _h h_h
p?=  mii=  2mgc (7\ - _,> + <X - 7\_’> (5.22)

X
Then, eliminating p2 between Equations (5.22) and (5.18), after some cancella-
tion and reduction to common denominators, one may solve for A= }\ The re-

sult is

D WL R (5.23)
MmeC

This last equation gives the change in wavelength in terms of the universal con-
stants, h/moc, and the scattering angle #. In the derivation, apart frorr the
relationship p2 = EZ/CQ - mgc2, we used conservation equations for energy
and momentum, and simply eliminated the unwanted variables involving the
momentum of the electron.
. ° . . '
At a scattering angle of 0 = 90 , Equation (5.23) predicts that )\ )\ =

-3

1 —34 .
h/mgc. For the electron, mg= 9.1 1 X 10 kg, and h =6.63 - 10 joule-set;

calculating )\' )\ in Angstroms gives us
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‘ —34.
N o=\ = €63 x 10 Tisec = .0243 Angstrom (5.24)
9.11 x 107 kgx 3 x 10%m/sec

This is in extremely g\ood agreement with the experimental value for the shift at
90”.
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Figure 5.9. Modified and unmodified Compton lines.

The constant h/m,c = 2.4% x 10 '2is called the Compton wavelength and is
a characteristic quantum length associated with the electron.

In Figure 5.9 are shown graphs of intensity versus wavelength of the lines ob-
served at a scattering angle of 900, for scattering by the electrons in a number
of substances. Notice there are two lines, one at a position corresponding to zero
change in )\, the other slightly displaced from it. The displaced line is that due to
Compton scattering from free electrons, and is called the modified line. The other
is called the unmodified line, and is due to scattering from bound electrons. Here,
in place of the moss mgfor electrons in the Compton wavelength, a mass com-
parable to atomic ma@Qsses should be used, so the shift of wavelength is negligible.
In elements with higher valuer of Z, and hence with more tightly bound electrons,
there are relatively fewer free electrons, and so the intensity of the modified

line becomes smaller in comparison to that of the unmodified line.

PAIR PRODUCTION AND ANNIHILATION

Another phenomenon in which the quantum properties of light enter is pair
produciion, where @ photon of sufficiently high energy (called a gamma ray),
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reacts to form an electren and another particle, a positron, which has positive
charge 'e and rest MaAss equal to the rest mass of the electron, my. Sym-
bolically, the process is represented by
Yy —>e + e’

where ‘e 7" represents the electron and “e+" the other particle, a positron. Let
us ask whether such a process can occur in free space. In this process, we assume
the photon of energy hr and momentum hu/c disappears, and, for simplicity,
that the positron and electron continue along in the same direction together, with

equal speeds v as in Figure 5.10. Applying the conservation laws, we have, for

o
E=hv v
/
oo~
p=hv/c
ot
Figure 5.10.  Pair production by a photon in free space is impossible as energy and
momentum cannot be simultaneously conserved.
conservation of energy,
2myc?
hl/ = ——-—0_-__
e (5.25)
1 - v/c
Conservation of momentum gives
hv 2mqv
(5.26)

¢ VT - vic?
Eliminating the frequency ¥ from the above equations, one can solve for the

speed v. This can be done, for example, by dividing the second equation into

the first, giving us

c= = (15.27)

or v = c. This immediately implies that the rest mass must vanish, and hence we
arrive at a contradiction: The process as we have assumed it to occur is impos-
sible. This is because energy and momentum (cannot simultaneously be conserved
in free space in this process. Assuming different speeds or directions for the two
particles would not alter these conclusions.

However, if the high-energy gamma ray passes near a very heavy particle,
then the heavy particle can soak up all the momentum without carrying away a
significant amount of energy. To show this, the process is pictured as in Figure

5.11: The % gives much of its momentum to the heavy particle, and almost all
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ya

E—hy /
p=hv/c e
<g;’"; Mv=hv/c
M

"

\Figure 5.1 1. A high-energy gamma ray passing near matter can create an electron-
positron pair-material nuclei soaking up momentum but not energy.
its energy to the electron-positron pair. let us see why this is so. The ratio R
of energy carried off by the heavy particle to energy available is
Y2 Mv?
R= " (5.28)
hy

where we may use the nonrelativistic expression for the heavy particle if the most
energetic Y rays we consider have energies of no more than about ‘10 MweV,
which is small compared to the rest energy of a heavy particle such as a proton.
If all the momentum of the x ray is assumed to go into momentum of the heavy
particle, then hl//c = Mv. Solving this last equation for v, we have v = hv/Mc.

Substituting v into the ratio R, after some cancellation, we get

R - Yo M(hu/Mc)2 |,
ST R T

hv -

Thus, since hv << MCQ, the ratio R is very small, and the fraction of energy
carried away by the heavy pcnrficle is negligible, even when it takes up all the
momentum. In general, not all the momentum is given to the heavy particle, but
it takes up enough to allow the reaction to take place.

Having accounted for momentum conservation with the presence of the heavy
particle, we have only to consider energy conservation in the pair creation
process. Thus, if v cnd v_ are the velocities of positron and electron, respec-

tively, then

2 2
myc mocC

VT e Ve

The minimum gamma-ray energy required to create a pair will occur when the

hy =

final energies of both particles. are minimum. This will occur when v, = v_ = 0.

Such a minimum kinetic energy for a process to occur is called the threshold
energy, and

o] peeshold = 2moc? (5.29)
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Since the rest energy of an electron is 0.511 MeV, the threshold gamma energy
is 1.022 MeV, It is indeed observed experimentally that when gamma rays of
energies greater than 1.022 MeV pass through matter-so that many heavy
particles are present-electron-positron pairs are created.

An electron and a positron can also cornbine in a collision in which they
annihilate each other arnd give off a burst of radiation. Suppose the electron
and positron were initially at rest. Their total energy is 1.022 MeV. If they
annihilate each other, giving off one photon only, momentum could not be con-
served because the initial momentum is zero, whereas the final single particle
would have to possess some momentum. Thus, at least two photons must be
emitted. If two photons are emitted, then in order to conserve momentum they
must go off in opposite directions, with momenta of equal magnitudes. Thus, their
energies will be equal (see Figure 5.12). Each photon will then have to carry

away an energy of 0.511 MeV. This is observed experimentally.

Before

e
RN
N\

After

hy=moc?

Figure 5.12. Pair annihilation ot rest causes at least two photons to be given off, which
travel in opposite directions with equal energies.

Whereas the phenomena of pair creation and annihilation do not give an
independent way of measuring Plonck’s constant, because the frequency of the
photon is much too high to be measured, they show clearly that the photon
must carry energy and momentum, and that total energy and momentum of the

particles in a reaction are both conserved.

5.7 UNCERTAINTY PRINCIPLE FOR LIGHT WAVES

It is a general physical fact that any measurement of a physical quantity
generates uncontrollable disturbances which may alter the value of the physical
quantity being measured. For example, to measure the temperature of a gas, a

thermometer must be introduced into the gas, which may decrease the volume
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slightly and hence heat up the gas. In addition, there might be some heat
exchange between gas and thermometer. When analyzed in detail, all physical
measurements can be shown to have a similar disturbing character. We are
interested here in the uncertainties introduced into the values of frequency
(energy) and wavelength (momentum) of light waves by attempts to measure
their values, ¥ and A
Consider a measurement of frequency. A frequency is 1 number of wcycles per
unit of time, so to measure a frequency, we have to count the number N of wave
crests that pass a g‘n’ven point in a given time /_\f; then the frequency will be
given by
v = N (5.30)
At
Here, At is the time interval ©Over which the measurement extends. In counting
N, the number of crests, various difficulties may arise. If the wave is not a pure
sine wave, then it wil consist, perhaps, of a superposition of several frequencies,
and repeated measurements of N wil not agree. Even if the wave is a pure sine
wave, when we count crests over a fixed time interval At, then for a porticulcr
measurement we might not know whether we should include the last portion of a
wave as a crest or not. To put it another way, suppose we chop the pure sine
wave so that it only lasts ¢ time At. Then the sharp variations in amplitude
at the ends can be represented in terms of a superposition of waves of many
different frequencies, so that repeated measurements of N would not always give
the same value. It is not difficult to make an order-of-magnitude estimate of the
range of uncertainty, AN of N. It will be about 1, since in counting crests
we may miss one or more crests at the ends. Thus, if the uncertainty in N is
AN ™ 1, there will be a corresponding uncertainty Av in our measurement of

frequency, and this will be

Ay = A—N ~ 1 (5.31)
At At
Thus, the product:
AvAt o~ (5-32)

This result arises purely beccuse of the wave nature of the light; it is not only
valid for light but for all other classical wave disturbances, and also for other
waves such as those oxrising in quantum theory.

From Equation (5.32), we <N obtain a corresponding uncertainty relation for
energy. The energy of a photon of frequency vis E = hV, so the uncertainty
in energy will be related to the uncertainty in frequency by AE = h Au.

Therefore,
AEAt >~ h (5.33)

This result states that the product of the time At over which the measurement
is conducted, times the uncertainty in the measurement of energy of a photon,

is approximately h.
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TABLE 5.3 Typical Data From a Frequency Counter: Time Interval

At = 1 .0 sec. Numbers of counts in repeated measuremenits:

100404 100485 100485 100482 100485
100485 100485 100484 100483 100485
100486 100485 100486 100484 100484
100484 100485 100485 100482 100485
100485 100486 100484 100482 100484
100485 100485 100479 100484 100485
100485 100484 100482 100483 100484
100485 100484 100482 100484 100486
100485 100485 100483 100485 100485
100485 100485 100483 100485 100485
100485 100484 100484 100485 100486
Average number of counts = 100484.3 1

RMS deviation from the mean of the number of counts = 1.28 counts.

In Table 5.3 are given the numbers of counts in repeated measurements by an
electronic wave crest counter, which has counted crests of a wave put out by an
audio signal generator over a time interval At = 1 .00 sec. The root mean square
deviation from the mean of N can be taken as a measure of the uncertainty in
N. From the table, one can find the uncertainty in frequency of the measurements;

it is 1.28 Sec—‘.Thus the uncertainty product is

AvAt ~ 1.28

in accord with the uncertainty principle, Equation (5.33).

MOMENTUM, POSITION UNCERTAINTY

An uncertainty relation mQy be obtained in a similar way, which relates momen-
tum and distance. Imagine freezing a pure sine wave and measuring the number
of wave crests, N, within the distance AX on the meter stick. Then the wave-
length Ais given by A= Ax/N. The momentum will be
p = h_ AN
A Ax
However, again because near the endpoints it wil not be clear whether we have
included the last wavecrest correctly or not, repeated measurements may give
differing values for N. Again, the uncertainty in N will be roughly AN 2~ 1,

and the corresponding uncertainty in momentum wil be

h
Ap ~ L
P Ax
or

ApAx =~ h (5.34)
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Figure 5.13. Basic uncertainties arise in attempts to measure wavelength or momentum.

If we take os a measure of Ap and Ax the rms deviations from the mean,
this uncertainty relation can be made more precise. As one might guess, there
is a wave shape that makes the uncertainty product Ax Ap a minimum. It turns
out that this minimum occurs when the wave shape is a sine wave modulated
by a gaussian, of the form cef"?/z"2
Ax Ap = h/47. so, in general,, we could say that Ax Ap > h/4x.

, with ¢ and ¢ constants. For this wave,

In terms of wavelength, the ‘uncertain'ry in )\ is

/ 2
AN = A‘ﬂ =A_’.‘_AN= Ax)? AN (5.35)
. N/ N? N Ax
and this gives, in terms of the measured value A = Ax‘/N,
2
ANAXx > = (5.36)

47

The uncertainty relaton Ap Ax >h/4m for light waves, states that a measure-
ment of momentum of a light wave which is carried out over a spatial interval
Ax will have an uncertainty such that the product of Ax times the uncertainty
in momentum is greater than h‘/47r_

These results show that there are basic limitations on our ability to simulta-
neously measure certain properties of light waves; later, we shall see that very
similar uncertainty relotions hold for material particles such as electrons,, protons
and atoms. No conceivable measurement process can give rise to knowledge of

physical quantities which violates these relations.

PROBABILITY INTERPRETATION OF AMPLITUDES

We have seen in detail how light waves carry energy E = hy and momentum
p = h/}\, and that when they interact with matter, photons are emitted and

absorbed and have many particle-like properties. We now have to reconcile
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these results with the fact that in calculations of interference and diffraction,
the experimental results are very well explained by using wave-like properties,
namely superposition of wave amplitudes. In a diffraction calculation, illustrated

in Figure 5.14, the square ¢(0) 2 of the amplitude lﬁ(ﬁ) is proportional to

Figure 5.14. Double-slit diffraction pattern for light must be interpreted in terms of
probabilities.

the intensity of the light arriving at the screen at the angle 0, where ¢(0) is
obtained as a linear superposition of contributions lﬁ;(a) from each of the
individual point sources of Huyghen’s wavelets. Mathematically, the intensity is

given by

10) = k(o) |? = k} Z vi(0) |2 (5.37)

where k is some proportionality constant. In order to explain the form of the
diffraction pattern, it is said that the energy going into the angle 0 is propor-
tional to the absolute square, or magnitude of the square, of the total amplitude
2

However, if, according to the quantum theory of light; we are actually dealing
with photons of frequency ¥, and if the flux of photons going into the omg|e
f is n, then | = nhp; thus the square of the amplitude would be proportional
to the number of photons going into the angle f. Imagine that the screen on
which the photons are allowed to fall is fluorescent, so that whenever a photon
strikes the screen at some point, this is made evident by a visible flash. Then,
when the intensity of the incident photon beam is large, there are many photons,
and there will be many flashes on the screen. The number of flashes at a given
point is proportional to the square of the amplitude calculated -classically.

Suppose now that the intensity of the beam is reduced to such a low value that
only one photon at a time goes through the slit system. Then only one flash at a
time will be seen on the screen, at some definite position. Sometimes, the flash
will be at one point, sometimes at another. That is, the exact position at which a
given photon strikes the screen will be unpredictable. However, suppose the

screen is replaced by a film and a long exposure is made, so that over a long
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period many, many photons hit the film, one at a time. When this experiment
is performed, the pa‘Hern on the film is precisely that predicted classically, i.e.
the diffraction pattern. Thus, even though only one photon at a time goes through
the slit system, so that one might think photons could not interfere with each
other, one still obtains the di1’frqcﬂon pattern.

Therefore, the squared amplitude does not tell exactly where a photon will
go--which is unpredictable--- but it does tell what happens on the average to
many photons. It can only be interpreted as a probability. The square of the
amplitude, ¢(0)‘2, is thus proportional to the probability that a given photon
wil be found at the angle f. Y(f) is th en refered to as a probabiity amplitude.

To obtain the probability that a photon will be found at the angle 0, one
calculates the sum, or superposition, of all the probability amplitudes which
contribute to (). Then  Y(6) L= Z; ¥i(0) s proportional to the prob-
ability of finding a given photon at position #. This probability interpretation

of the amplitude squared is verified by many experiments.

surnmary

THE PLANCK RELATION BETWEEN ENERGY AND
FREQUENCY FOR LIGHT

In order to explain the observed properties of black-body radiation, Planck
postulated that light carried energy in discrete bundles called quanta, or
photons. If the frequency of the light is V, then the photon energy is E-= hl/,
The total energy could be nh,v, where n is some integer. This law is relativistically
form-invariant. Since E = pc for photons where p is the momentum, it follows

that p = h/}\_ The presently accepted value of h is:

h = 6.6262 X ]0’3" joules-sec.
Another useful constant is:

hc —6 .
—=1.2399 x 10 ¢ j-m/coul.

DUANE-HUNT LAW

If electrons are accelerated through a potential difference V, they acquire kinetic
energy eV. Then, if fhey are Suddenly stopped, the maximum energy that can be

emitted by an electron will be eV = hv_,,.
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PHOTOELECTRIC EFFECT

The work function ® of a metal surface is defined as the minimum energy
necessary to remove one electron from the surface. If light of frequency p is
incident on the surface, electrons may be ejected. The maximum kinetic energy

T..x of an electron is given by the Einstein photoelectric equation,

Toox = hv - &

max

If hy < ®, no electrons can come off. The critical frequency ¥,, at which some
electrons are barely able to escape, is given\ by huc = . The value of Trm is
independent of the intensity of the incident light; the number of electrons emitted

is proportional to the intensity nhvy of the light.

COMPTON  EFFECT

When a photon of initial wavelength A is scattered by a free electron, itself
initially at rest, then the scattered photon has its wavelength changed an amount
given by:

ANMOA= — @ cos 8)
Mek

where 8§ is the angle through which the photon is scattered.

PAIR PRODUCTION AND ANNIHILATION

A photon of energy greater than 2m0c2 can, when passing near a heavy particle,

be changed into an electron-positron pair. An electron and positron at rest can

annihilate each other to produce two or more photons. If two photons are pro-
. 2

duced, they each have energies of myC .

UNCERTAINTY PRINCIPLE

A single measurement of frequency of a photon, which lasts over a time interval,
At, necessarily has on uncertainty given by AvAt > 1. Then the energy is un-
certain by an amount AE, where AEAt > h. In a measurement of momentum
of a photon, where the position of the photon is known to within an accuracy
Ax, there will be an uncertainty Ap in momentum given by ApAX > h/47l'.

PROBABILITY INTERPRETATION OF AMPLITUDES

Experiments performed with low intensity light waves indicate thot the squared
amplitude of the wave may be interpreted @5 the probabilty that a photon will

be found at a certain position.
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problems

1. What energy would an electron require in order to have the same momentum as
an 8 MeV photon?
Answer: 8.0163 MeV.

2. Find the wavelengths for photons of the following energies: (a) 10.2 eV corre-
sponding to the shortest wavelength emitted by a hydrogen atom; (b) 100 keV
X ray; (c) 500 MeY gamma my.

Answer: (@) 1216 Angstroms;(b) 0.1243 Angstroms; (c) 2.49 X 10°° Angstroms.

3. Find the kinetic energy in MeV of an electron with momentum equal to ¢ times its
rest mass. Compare with 1% m(,vz,

Answer: (V2 - - Nmoc’ = 0.212 MeV; % mov2 =Yamoc? = 0.128 MeV.

4. Two particles travel in the lab system with equal but opposite speeds and collide.
If the kinetic energy of each particle is 9 times the rest energy (mocz) as observed
from the lob, then what is the kinetic energy of one of the particles as observed
from a system in which the other particle is at rest?

Answer: l98m01:2.

5. A proton with total energy 'ymoc2 and momentum 'ym0c2, where ¥y = 'I/\/]i_vé/_ci
and v is the proton speed, hits a proton at rest in the laboratory system. Use the
transformation equations for the total energy, (v + ])mocz, and momentum,
Ymgy, of the two-proton system to find the energy and momentum in a frame moving
with speed v’ relative to the laboratory system. Take the relative velocity parallel
to the velocity of the first proton. Show that if y' = 4yv/(y + 1), the momentum
is zero. This center of momenfum system is classically the center of mass system.
Show that in thot system,

! (ry+ 1

V1= vt 2

and thus that the total energy in the center of momentum system is

\/2_(7 + 1ymoc?

6. An electron has a kinetic energy of 1 MeV in one inertial system. Find the magnitude
of the momentum of the electron in MeV/c in a system moving relative to the first
at c/2, (a) in the same direction as the electron velocity in the first system; (b) per-
pendicular to the electron velocity in the first system. The electron rest mass
corresponds to 0.51 1 MeV.

Answer: (a) 0.770 MeV/c; (b) 1669 MeV/c.

7. What would be the wavelength of the most energetic x rays produced by electrons
of 50 keV kinetic energy striking a lead target?
Answer: 0.249  Angstrom.

8. For what wavelength of incident light will photoelectrons ejected from zinc have a
maximum velocity of ]/]0 of the speed of light?
Answer: 4.83 Angstroms.

9. A gamma ray of energy 5.7 MeV is Compton scattered at an angle of 60” from free
electrons. Find the energy in MeV of the outcoming photon.
Answer:  0.867 MeV,



'34 Quantum properties of light

10.

11.

12.

13.

14.

15.

16.

Find the least frequency of incident light that will knock electrons out of the surface
of a metal with a work function of 3 eV,

Answer:  7.24 x 10*sec”".

The potential barrier of electrons at the surface of a metal which leads to the

work function is due to electrons which get slightly outside the surface, inducing a
positive charge inside the surface. This leads to a force which is the same as if an
image charge equal cmd opposite to that of the electron were attracting the electron,

as shown in the diagram. Verify qualitatively that the lines of force between electron
Metal surface

72

e charge Electron
e
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g

b x |

\\\\\\\\
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and image charge would satisfy the condition that they must be perpendicular to the

conducting surface. Show that the electron has a potential energy of —e2/(]67r60x)
where X is the distance to the metal surface. This image force should no longer be
present once the electron is a distance from the surface comparable to the metal
atom spacings, say 1 Angstrom. Compute the electron potential energy at that
distance and compare in order of magnitude with work functions given in Table 5.2.
Answer: 3.6 eV.

Find the maximum kinetic energy in eV of electrons knocked out of a surface with
a work function of 1.5 eV by light of wavelength 6000 Angstroms.

Answer: 0.57 eV.

The threshold que|er|gfh for emission of electrons from a Cs surface is 6540
Angstroms. Calculate 'Thework function of Cs in eV,and calculate the maximum
energy in eV photoelectrons would have if photons of wavelength 4000 Angsiroms
were incident on the surface.

Answer: 1.90 eV; 1.20eV.

An x-ray photon is scattered by a free electron at rest through an angle of
60”. The wavelength changes by 15%. What is the incident wavelength?

Answer: 0.0486 Angstrom.

Compute the wavelength shift for photons backscattered (9= 180”) from free
protons.

Answer: 2.65 Xx ]075 Angstroms.

Show that when a photon is scattered by a free electron at rest, the product
of the initial frequency and electron rest mass divided by the product of the final
frequency and final electron mass is 1 - v/c cos <I’,where Vis the final ele»:fron

speed and $ is the angle between the scattered electron and photon.
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A 150,000 eV photon collides with a free electron at rest and scatters at 90”. What
is the final kinetic energy of the electron?

Answer: 34 keV.

Derive an expression for the kinetic energy of the recoil electron which has just
been Compton scattered, in terms of the initial photon energy hy and the initial

and final wavelengths, A, A’ of the photon.

Answer: J

= hg\ ----- where AN = X -~ A

. An electron traveling with speed v = (“/_,_> )c is hit head-on by g photon of energy

hv and is brought to o dead ‘SfOP. There is a scattered photon which goes back
along the path of the incident photon. Calculate the energy hy of the initial and
hy' of the final photons in MeV.

Answer: hy = 0.17MeV; hy' = 0.511 MeV.

A positron of kinetic energy 1 MeV annihilates with an electron at rest. If the
resulting two photons have equal energies find the angle between their momenta.
Answer: 90.6”7.

A 2 MeV photon creates an electron-posiiron pair. If the resulting electron has a
kinetic energy of 14 MeV, what is the kinetic energy of the positron?

Answer: 0.728 MeV.

In the hydrogen atom the light given off when an electron goes from one energy
state to another is not quite monochromatic. Estimate the wavelength spread in
light given off at close to 6563 Angstroms using the uncertainty principle, if it
takes around 'IOk8 seconds for such a transition between energy states to take
place.

Answer:  0.0014 Angstrom.
| Suppose that the position of an object is to be

measured by means of scattering single

photons from it and observing the photons
< through a microscope. The radius 1f the objec-
tive lens subtends f at the object. Show that
due to the scattering of a photon with momen-
tum hw/c, the uncertainty in momentum of the
object is of order Ap = (hv sin f)/c. Show
that in a plane perpendicular to the lens axis,
the distance between field maxima for the scat-
tered photon can be os high as Ax = X/sin @,

Object ——— This can be taken as the error in position

measurement of the object. Find AxAp.
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6.1

matter waves

It has already been seen how in some situations electromagnetic field quanta
may have particle-like attributes: They carry energy in discrete amounts E =
hl/, and are emitted and absorbed by matter as though they were particles.
When traveling through a slit system, however, they can still behave like waves,
in the sense that the probability that a photon will be found at some angle 0
from its original direction is proportional to the classically calculated diffraction
intensity pattern.

Another remarkable fact of nature is that particles such as electrons, neutrons
and others can also display wave-like character under appropriate experimental
conditions. Since experimentally it is found that atoms emit light at only discrete
frequencies, just as a stretched string only emits sound waves at a discrete set of
frequencies, it might be expected that a wavelike character of particles would
provide the key to an understanding of atomic spectra. Just as the discrete fre-
quencies of a stretched string are due to standing ‘waves on the string, so the
discrete frequencies of atomic spectra could be due to standing waves within
the atoms.

The wavelike properties of particles were postulated by Louis de Broglie in
1924. He was led to this discovery when he noted certain similarities in the prop-
erties of particles and waves, under Lorentz transformations. We shall take up
the fundamental study of these waves-de Broglie waves-in this chapter. De
Broglie assumed that, associated with a particle of speed V, was a wave having
some phase speed not equal to c. This phase speed w is related to V by a simple
equation, which we shall derive below. That a phase speed can be associated
with a particle in a consistent way depends on some special features of the rela-
tivistic Lorentz transformations. Let us begin by examining the transformation
properties of plane waves of any kind under Lorentz transformations between

inertial frames.

PHASE OF A PLANE WAVE

A plane wave may be conveniently described in terms of its propagation vector K
and angular frequency, @ = 2mp. If the wavelength in the inertial rest system R
is }\, then the propagation vector is defined as a vector of magnitude 2'71'/)\,
pointing in the direction of propagation of the wave. The propagation vector

far a plane wave is thus normal to the wave fronts.
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6.1 Phase of a plane wave

For a wave propagating along the positive x cxxis, one possible sinusoidal
ike wave form has the wave amplitude, or wave function,
[ 2mx ) ,
Y = Aeexp|i ~ - 27t (6.1)

/

where A is ¢ constant and V = w/27r is the frequency. This wovefunction is more
simply expressed in terms of the angular frequency « and the wavenumber k =

k|
¢/ — Aei(kx wt) (62)

The term kx can be written in vector form, since in this case, k is parallel to the

x axis. Thus, if r is the position vector of some point in space, then
kx = kx = ko + kyy + kz = k- r (6.3)
because ky = k, = 0. The wavefunction in terms of k . r is
¢, - Aei(k'rAwi) (64)

Since the wavefunction is now written in terms of vectors, Equation (6.4) gives
the wavefunction no matter what the direction of propagation is. For example,
if the wave were propagating in the x-y plane at an angle of 0 relative to the

x axis, then the x and y components of k would be
ke =kcos fl, k, = k sn f (6.5)

So, in terms of k and f, k r = kx cos # + ky sin f, and the wavefunction
would be A exp [i(kxcos 0 +ky sin § = wt)].

The function k-r = wt is called the phase of the wave; that is, the phase is
the coefficient of | in the exponent of the wavefunction. If the wave amplitude has
a trigonometric form such as gb = A cos (k‘r - ouf), then the phase is the
argument of the frigonomefric function. Each time the phase of the wave changes
by 27r, the wave amplitude goes through one complete cycle of oscillation. If we

fix our attention on a locus of points of constant phase, such as
k- r - wt = constant (6.6)

then, as the time increases, the positions r which satisfy this equation move with
a velocity w, called the phase velocity. These points of constant phase define a
wavefront, and hence the phase velocity is just the velocity with which the wqgve-
fronts propagate. The phase speed can be written in terms of k and by using
the definitions:

2T A«
wo= p\ = 2= 2 (6.7)
27 k
This could also be obtained by differentiating Equation (6.6):
dr
- w (6.8)

i
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Since the velocity dr/df for the wavefront is parallel to the direction of propaga-

tion, kw = w.

example If, at a fixed point r, the amplitude is observed for 12 periods of oscillation, what

is the net change in phase of the wave?

solution The period is T = 27/w; observing for a time At = 12T = 247/w results in a
change of phase A (k-1 = wt) = —wAt = —24r.

If N wavecrests propagate past a given point, this means that the phase has
changed by 27rN. Thus we arrive at the main point of the discussion so far: The
change in phase of the wave is proportional to, and hence is a measure of, the

number of wavecrests which pass a given point.

6.2 INVARIANCE OF THE PHASE OF A PLANE WAVE

A pure sine or cosine wave in an inertial frame R will also appear to be a pure
sine or cosine wave in another frame, if the wdveé amplitude is the solution of Q
wave equation which is relativistically invariant. We will assume this to be the

case. Then, by considering Figure 6.1, it is easy to see that the phase of 4 plane

s s’ \
\ \
Wavefront of
A zero phase
\ v
A
\ \
o) o AY

\ \

Figure 6.1. A plane wave observed in two inertial systems.

pl r,t)
p'le.t)

wave is @ relativistic invariant; that is, it has the same numerical value at corre-
sponding physical points in all inertial frames. Zeros of the amplitude in R will
appear to be zeros of the amplitude in G, and similarly for the maxima and
minima. So for every wavefront in R, there will be a wavefront in G. For ex-
ample, suppose the wavefront of zero phase passes the origins 0 and 0’ in Fig-
ure 6.1 at the instant 0 and 0’ coincide. If this wavefront is observed at some
later time at position P’(r',f') in G, which coincides with P(r, t} in R, then
it will still have zero phase. The same holds for every other plane of constant
phase, at any point in space and time. Thus, the phases of the plane wave as
observed in the two inertial frames are equal, and the phase is a relativistic in-
variant. This invariance will allow us to derive some interesting things about the

transformation properties of k and .
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If f =t = 0 when the origins coincide, and the phase in G is K’ . 1" = w't/,
the phase in R is k.- r — wt So in mathematical form the invariance of the phase
can be written as:

K+r - wt = k-r wf (6.9)

This equation reflects the fact that a wavefront, such os a maximum of the
wave amplitude, has physical reality, and all observers, can agree on the number
of wavecrests which pass by a given physical point. Hence, they can agree on the

value of the phase.

».3 TRANSFORMATION EQUATIONS FOR WAVEVECTOR AND
FREQUENCY

Use of the invariance property, Equation (6,9), allows us to obtain the trans-
formation equations for K’ and ' in terms of kK and w. We first write out the in-
variance equation in more detail, using components of K: k,, k, k, and of
1. 7 !
k: k; ,l(y, k. we get

kyx' + kyy' + k2’ - - wr o= kx o+ ky + kz = wt (6.10)
This equation is valid for all values of the two sets of space and time coordinates
which refer to the same physical point and which are, therefore, connected by the
Lorentz transformations. If we express x,y,z and tin terms of x',y',z' and

#, then, since R moves with speed v relative to G, we have the Lorentz trans-
tormations, Equations (3.16) and (3.18):

1

X = ——mmemmm—— (X' + Vi),
\/i _ Vz/cz
Y =Y
z = 7
1 oo
t = e——— f + - (6.1 l)
VT = Ve ( c?)

Substitution of these values of x,y,z,  into Equation (6.10) gives the result,

k)x’ + kyy' + kjz' — @'t =k, —(x’' + vt') + kyy + k,z'
’ V- vt ’

!
w VX |
- e [V 4+ (6.12)
V11— /c <
This last equation must now be true for all values of x',y',z' and t’. For ex-

ample, if we consider an observation on the z axis when the origins coincide so
thatx’ =y’ =1 = 0 with 2 % 0, the equation reduces to

! !
klz' = k,z (6.13)
After cancellation of zl, we obtain

k! =k, (6.14)
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Similarly, by taking x’ = z° = t = 0, yo # 0, we can show that
' -
k, =k, (6.15)
To obtain k, in terms of k, and w, we set y' = z' =t = 0 with x un-
equal to zero. We get
k.x' wvx’'/c?
kox' = X - /_: (6.16)
V1 — v/t V- vi/e?
or
1 vw
k,,( = ——— _ — (6.17)
V1= vl c?
Lastly, using x = y’ = 22 = 0 and t° # 0, we can find w’ in terms of  and
k,. The result is
! ] 3
V1 — v/
Collecting the four results, we have the transformation equations:
' 1 w
k, = —— k,( -V - (6.19)
V- v2jc? c
k; = ky (6.20)
k, = k, (6.21)
r ]
w' = (w — vk,) (6.22)

V1= vl

These results were obtained simply by showing that the phase of any ‘plone

wave, going with any phase speed, has the same numerical value in all inertial

frames. In other words, the phase (k . r

bining this with the Lorentz transformations,

formation equations for k and w, by equating coefficients of x’, y’, z’

on both sides of the equation.
If we considered these equations in the

w/k = c, the speed of light, they would

Doppler effect for light found in Chapter 4.

Equations (6.19) through (6.22) resemble

= wt) is a relativistic invariant. Com-

we were led directly to the trans-

and f

!

limiting case of phase speed w =

lead back to the equations for the

very closely the relativistic trans-

formation laws for momentum and energy of a particle, which are:
p! 1 vE
x = T — x =
V- vt c?
’
Py = Py
, (6.23)
p: = pz
' 1
E' = ——— (E — vp,)
V1= vt
This is a very suggestive comparison.
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4 PHASE SPEED OF DE BROGUE WAVES

With the transformations in Equations {6.19)—(6.22), we can examine in detail
the hypothesis of de Broglie, namely that with each particle there can be asso-
ciated a wave which travels along with the particle ¢$ the particle moves, with
some phase speed w which may be different from the particle speed V. The trans-
formation equations suggest that the wave vector k and angular frequency
might be closely related to the momentum p and energy E of the particle. In
fact, we wil see that if particles have waves associated with them, the only pos-

sible relations must be of the form

whereh is a constant.

Let us first derive the relation between phase speed and particle speed. In the
above transformation ‘equations, (:.J'/t':2 is analogous to E'/Cz, and Kk’ is analo-
gous to p’. It was proved eorlier that c2(E/c2)2 -~ p was a relativistic invari-
ant. In the same way, we could show that Ci’((.o/cz)2 - kzis a relativistic in-
variant or that it has the same value in all inertial frames. Mathematically, this
can be expressed as:

k'?2 = £ — k? = jnvariant = C (6.24)

where C is a constant independent of the inertial frame in which w and k are
measured.

In the special case of light, which consists of zero rest mass particles, the value
of the invariant, (;.)2/62 - k2, is equal to zero. This suggests that when a wove
of angular frequency w and wave number k is associated with a material
particle, then the value of the invariant w"’/c - k2 might be related to the
particle’s  mass.

De Broglie’s hypothesis was that, associated with @ particle having speed V,
was a wove having phase speed W. He assumed that the energy in the wave
traveled along with o group speed Vg = dw/dk, which was identical with the
purﬁcle speed V. The group speed Vg = dw/dk can be calculated using the in-
variant expression in Equation (6,24), by differentiating with respect to k. The

result is
dw
2w/c? == - 2k = 0 (6.25)
dk
Solving for the group speed, we get
dw k
vg = =2t (6.26)
dk w
Since the phase speed is w = w/k, the group speed in terms of w is
c?
vy = — (6.27)

w
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If we identify the particle speed V with the group speed, then

2
—v==_E
Vg = = — (6.28)
w
or
wv = ¢? (6.29)
This relation, wV = c:‘, is form invariant, since its derivation was based on a

relativistic invariant. Thus, if in another inertial system G the particle speed is

V’, then upon identifying the group speed dw'/dk' in G with the particle speed
2

V’, one would obtain, by an analogous argument, wV' = ¢

Since particle speeds must be less than c, in general the phase speed will be
greater than c. Indeed, for particles whose velocities approach zero, the corre-
sponding phase speed must approach infinity. Although the phase speed is
greater than the speed of light, this does not contradict special relativity, be-
cause the energy travels along with the particle speed V, which is identical with
the group speed. The individual wave crests travel with the phase speed, whereas
the energy travels with the speed of the envelope of the waves, the group speed.

To illustrate the relation between phase and group speeds, imagine the

analogy, as in Figure 6.2, of a plane light wave traveling with speed c incident

Point of infersection | //

Screen

/

Figure 6.2. A plane wave hitting a screen obliquely.

upon a screen at an angle | from the normal. The point of intersecton of a wave-
front with the screen travels along the screen with a speed w = c/sin i. This speed
can approach infinity, ii { approaches 0. However, the energy travels along the
screen only with the speed V = c sin i. Hence, in this example, wV = c2_

From Equation (6.29) a useful relation between energy, momentum, wave-
length and frequency of a particle can be derived. We know that w = w/k, E =
mc2, and P = mV. By means of these three relations, we can eliminate w, Y and
Zin wv = ¢’ The result is (w/k)(p/m) = E/m, or

g (6.30)
p .
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.5 PARTICLE INCIDENT ON INTERFACE

The discussion above had to do with arbitrary particles (waves) traveling through
free space, and we have established that for a wave of phase speed w to be as-
sociated with a particle of speed V, it is necessary that WV = C2. Now we wish to
show that relations of the form p = hk and E-= hu), where A is a constant, are
valid.

We can obtain more information about p and k by considering a situation in
which the particle (wave) is ncident on a piece of material which acts like a re-
fractive medium for the wave. This refraction simply corresponds to a (change in
phase speed. As far as the oortide is concerned, the refraction takes place be-
cause the new region has a different constant potential energy U than the po-
tential energy in free space. (\Ne use U for potential energy here, since V is used
for particle speed.) For electrons, for example, this situation could be realized
approximately by letting an electron pass into a metal. Let’s first treat the situa-

tion assuming we are dealing with particles. In Figwre 6.3, Py is the incident

Free space

u 0

77“/77// / // TPofemiql
/ / / / / P b0
/ // / // /

Figure 6.3. A parﬁc\e passing from one region of constant potential energy into another

of different potential energy.

momentum at an angle of i from the normal to the surface. The quantity pg is
the momentum after the particle passes into the region of constant potential
energy, U o0, at an angle r from the normal. The only force acting on the
particle is one acting normal to the surface, as the particle passes the surface.
There is no force acting pcu'ollel to the surface, so the components of p; and P,
parallel to the surface are equal. In other words, the components of momentum,
in the directions along which no force acts, are conserved. In terms of i and r,

the angles of incidence and refraction, this can be written mathematically as
Pysin i = pysinr (6.31)

or

P2 sin |
P Tsin r

(6.32)
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6.6 WAVE RELATION AT INTERFACE

Next, let us treat the situation assuming we are dealing with waves. In Fig-

ure 6.4, OA is a wavefront in free space, and A travels with speed w,,6 from A

Figure 6.4. A wave passing from one medium into another, where the phase speed is
different, changes direction by Huyghen’s principle.
to Bin time Af. Angles OAB and OCB are right angles, and side OB is common

to both triangles. Thus, since angle AOB = | and angle OBC = r, we have

w,At = OB sin r and w;At = OB sin i. This latter set of equations can
be written, by dividing out At and OB, as
W, sin 1
= (6.33)
w, sin 1
If this result is applied to light waves, it is just Snell’s law. The derivation is the
same as that used in deriving Snell’s law.

Combining the results of Equations (6.32) and (6.33), we can write

sin |
P2 _ 5N (6.34)

P sin |

Wy sin r
=200 (6.35)

w, sin |

and therefore,

Pi1Wy = PaW;, (15.36)

Thus, as the particle (wave) travels into the region of nonzero potential, the
product pw remains constant. In terms of k and w, w = WK, so the product pw/k
remains constant. Now if a linear boundary condition is assumed, such as as-

suming that the wave amplitude or its derivative is continuous across the surface,
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the frequencies w, and W, must be equal; otherwise, the amplitudes would get
out of phase and the boundary condition could not be satisfied for all time. Al-
though we do not yet know all the physical laws obeyed by de Broglie waves, it
will be seen later that linear boundary conditions do exist and, therefore, the
frequency remains the same. Hence, since pw/k does not change in crossing the

surface, the quantity p/k remains the same, or, in terms of py, P, k1 and kj,

Rl
o
)

P
bl
~N

DE BROGLIE RELATION

As the electron moves 0Cross an interface between two media, the ratio p/k re-
mains constant. If it then moved into a third medium, p/k would still remain un-
changed. Thus, no matter what the speed of the particle is, p/k will remain

unchanged. Since p/l’( remains unchanged, we can write:

p = hk de Broglie Relatiorl‘ (6.37)

whereh (read h bar) is a constant independent of speed. This is precisely the re-
lation assumed by de Broglie. Since a general inertial frame of reference was
used, this result is independem of the frame of reference and should be rela-
tivistically invariant. The theoretical discussion does not tell whether A depends
on the kind of particle or is a constant independent of particle type. The answer
to this question must be obtained by performing experiments on various particles.
Experiments show that the constant is independent of particle type, and thus this
h is the same as that discussed in connection with photons, with

h

T or

h (6.38)
a universal constant. Qne such experiment is discussed in the next section.

If de Brogiie waves carry momentum p = ﬁk, we can derive a corresponding
relation between energy and f‘requency. It was shown that in free space, w/k =
E/p [see Equation (6.30)]. Thus, since p = hk,

E = hw de Broglie relation (6.39)
In terms of the frequency, V =: w/27'r, the energy can be wiritten as:
E = 2rhy = hy (6.40)

If E = hw and p = h k in the inertial system R, then from the comporison of
the transformation equations for energy and momentum with the transformations
for K and w in Equations (6.19) through (6.22), the relation between E’ and «'
in G must be

E’ = ho' (6.41)
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and the relation between p’ and k’ must be

p' = hk (6.42)

The de Broglie relations are thus relativistically form-invariant.
Finally, if E = hw and p = Ak, then the invariant,

2
E° . p? = mic? (6.43)

can be used to calculate the unknown constant C in Equation (6.24). The result is

2
N S G

c? h

From Equation (6_38), we see that for electrons the constant moc/ﬁ is 27r divided
by the Compton wavelength, h/moc.

To summarize briefly the logical arguments leading to de Broglie’s relations,
if a particle has wave-lke properties so that (1 wave of phase speed w is associ-
ated with the particle in Free space, then wV = Cz,, where V is the particle or
group speed. If these waves carry energy and momentum, with E = hw and p =
'ﬁl(, then the transformation laws for k and & are equivalent to those for p and
E. So, instead of two different sets of transformation equations, there is only one
set. Further, all these relations are relativistically form-invariant, provided the

constanth has the same value in every other inertial frame.

6.8 EXPERIMENTAL DETERMINATION OFH

De Broglie predicted that electrons would behave like waves with a wavelength
A= h/p. When these waves enter a crystal with regular lattice spacing, they
should scatter and show interference, much as light does on a grating. These
matter waves were demonstrated in 1927 by Davisson and Germer, who ob-
served diffraction peaks in a beam of electrons scattered from a Nickel crystal.
The experimental arrangement is diagramed in Figure 6.5. The hot cathode F
emits electrons which are accelerated through the electron gun, which strike a
crystal of Ni and are diffracted back at an angle (]5 into a detector. Knowing the
accelerating potential V, one may compute the electrons’ momentum, and know-
ing ¢ and the lattice spacing of Ni, one may compute the wavelength }\, or k =
271’/}\. Hence, one can measure the value of h for electrons. The positions of the
diffraction maxima are determined by constructive interference between waves
scattered from different sets of parallel planes within the crystal. This is called
Bragg diffraction.

In the next few pGrOgI’QphS, we shall derive the relation between the diffrac-
tion angle ¢ and the wavelength )\1 of the incident electrons. Anyone not inter-

ested in the details of this derivation should Skip to the result in Equation (6.48).
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Figure 6.5. The experimental a‘rangement in the electron diffraction experiments of
Davisson and Germer.

BRAGG EQUATION

Let the wavelength of the particles be )\] outside the crystal, and let the wave-
length inside the crystal be )\2. The wavelength is, in general, different inside the
crystal, because the electron has different  kinetic energy inside. The electrons are
incident normally on the crystal surface and pass straight into the crystc|l. They
then undergo Bragg diffraction from some set of parallel planes of atoms inside

the crystal (See Figure 6.6). Let 0 be the angle of incidence between the incoming

Figure 6.6. Incident and reﬂeded electron beams near the surface of a nickel crystal in
the Davisson-Germer experiment.

beam and the normal to some set of parallel planes. We will first find the Bragg
equation for diffraction maxima. Figure 6.7 is an enlarged picture of a portion of
two atomic planes, P] and P2, Lines A and B are two particle wave rays which

reflect partially at 02 on plane P2 and at 0, on plane P,, respectively. For
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DN \/’d/ °36%<§/

Figure 6.7. Beams incident on different partially reflecting parallel planes interfere due
to different path lengths.

the two reflected rays to add constructively, the path difference, QOQS, of the
rays must be an integral number pn times the wavelength )\7. From triangle

0O, O, Q, the distance QO, is d cos #. The path difference is then twice this dis-
tance, or

QO,S = 2d cos f (6.44)

Then the Bragg condition is 2d cos = nA;,n =1,2,..

The most intense diffraction peaks will occur due to reflections from planes
rich in atoms. |t is found that the dominant diffraction comes from the planes
indicated in the diagram of Figure 6.6, where the dots indicate lines normal to
the paper containing nickel atoms. The distance D between planes of densest
packing in the diagram is D =215 Angstroms for nickel. The spacing between
diffracting planes can be expressed in terms of the distance D between atoms in
the crystal, For the two parallel planes in the diagram, in terms of 0,

d = Dsin (6.45)

Therefore, for Bragg diffraction, in terms of D and the angle 20 (2 cos # sin 0 =

sin 26),

n\, = Dsin 28 (6.46)

6.10 DIFFRACTION OF ELECTRONS

The diffracted electrons come back toward the crystal surface; their ongle of in-
cidence on the surface js = 2, and their angle of refraction is ¢, the angle of
observation, as shown in Figure 6.8. From Equation {6.33), there will be ¢ wave-
length change when the electrons pass back into the free-space region. Since the
frequency does not change, from Snell’s law,

A Ay w sin
L e 4 (6.47)
A, ¥ w,  sin 28
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26

x,\

When the electron wqve exits from the crystal, 15 angle of incidence is 26’
and the angle of refraction is ¢, the angle of observation.

Figure 6.8.

Eliminating }\2 and f from equations (6.46) and (6_47)[ we obtain

nk, = Dsing (6.48)

Equation (6.48) can be used to experimentally determine the wavelength. The
quantity }\] is the wavelength outside the crystal, i.e. it is the wavelength of the
incident electrons. The angle ¢ is the angle of observation of the diffracted elec-
tron beam and n, which is the order of the diffraction peak, will
this case.

be equal to 1 in

In Figure 6.9 are the experimental results. The intensity is plotted for various

accelerating voltages 12 (in volts) in polar coordinates. It is seen that a diffraction

$
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Fugure 6.9. Curves, plotted in polar coordinates, showing the intensity of the sconered

beam at different angles of scoﬁering.

maximum occurs when V = 54 volts and d) = 50”. These results may be used to

calculate the constant, 27['7")_ The lattice spacing D of nickel is known from x-ray

diffraction analysis to be 2.15 Angstroms. Taking n = 1 in Equation (6.48) for

the first order maximum, we find for the wavelength:

A = 1.65 X 107" meters

(6.49)
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Next we calculate the momentum, knowing that the accelerating potential was
54 V. So the electron’s energy was 54 eV‘, which is much smaller than the rest
energy. Hence, we can use the nonrelativistic kinetic energy change to find the

momentum:

P eV, oo p = \/‘Z;n‘)oe\7 (6.50)

using e = 1.6 x 107" coul, mp =911 X1 0% kg, the result is:
p =3.97 x10 g m/sec 65 1)

The numerical value of 2mh for this case is obtained from p = hk = 27fh/Aor
Ap = 27h, and we find:

2rh = (3.97 x 107%) x (1.65 x107'%) j-sec
= 6.55 x 107-sec (6.52)

Within experimental accuracy this value of 2nh s equal to the value of 27h we
would have obtained if we were dealing with photons where )\p = h, Planck’s
constant. In their original experiment, Dovisson and Germer observed about 30
diffraction peaks under varying conditions of detector orientation and incident
electron energy; these experiments, as well a$ others using neutrons, protons,
electrons, etc., show the same numerical value for 27h as we obtaineol here.
Thus, nature appears to be such that instead of several constants relating
momentum and wavelength, there is only one universal constant, Planck’s

constant h. Hence, experimentally, in terms of Planck’s constant,

Bﬂﬁ = h Planck’s constantJ (6.53)

In fact, usua”yﬁ is defined as an abbreviation for the symbol h/27r.
In terms of h, the wcvelength of an electron can be computed from the de

Broglie relation, >\ = h/p, just as for a photon.

example 1. A particle has @ mass of 1 kg and a speed of 30 m/sec, about like a softball.

solution

What is the wavelength of the de Broglie wave associated with the particle?

The momentum is mv = 30 kg-m/sec. Then the wavelength, using h =
6.63 % 107 jsec, is

A= 2= 261 x 107 meters
p

~34 . .
A wavelength as small as 10 s meters could never be measured in a direct ex-
periment because the smallest diffraction gratings available are crystals, which

) -1
have a grating space of about 10 0 meters.

example 2. Neutrons have a mass of 1.675 x ]O_N kg. Slow neutrons coming out of a

nuclear reactor have kinetic energies of about T = 00466 eV. What is the wave-

length of such a thermal neutron?



Figure 6.10. Superposition of two photographs of diffraction patterns produced by beoms of purﬁdes passing through polycrystoline aluminum.
The upper half of the photograph is the pattern produced by diffraction of a monoenergetic electron beam; the lower half is the pattern produced
by x rays. The appearance of diffraction rings of similar radius is a direct demonstration of the wave nature of electrons. The slight discrepancies in
the radii of the rings results from the use of electrons and x rays of different wavelengths.
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solution The nonrelativistic expression for kinetic energy may be used, hence p =

6.11

6.12

V/2moT = 5.00 x1 0% j-sec. Then
A= == 133A
P

This wavelength is comparable to crystal atom spacings, and could therefore be

observed.

UNCERTAINTY PRINCIPLE FOR PARTICLES

We have seen how particles of energy £ and momentum p have associated with
them waves of frequency P and wavelength }\ Hence, one could measure the
energy of a particle by measuring ¥, or one could measure p by measuring A
When we discussed light waves earlier, we saw that in a single measurement
which lasted over a time Af, an inevitable uncertainty Av in the measured fre-
quency would be present. This uncertainty was such that, to within an order of
magnitude, AvAt o~ 1. since E = hv, in terms of the uncertainty of energy,
AE, the product of AE and At must be AEAt ™ h, similarly, for a measure-
ment of momentum in a single measurement which takes place over a spatial in-

terval Ax, the uncertainty in momentum Ap for a light wave is given by

ApAx =~ g (15.54)

These considerations were based principally on the wave nature of light and
did not depend on the wave speed. In a similar way, particles have de Broglie
waves associated with them, with energy related to frequency, and momentum
related to wavelength in just the same way as for light. So we would expect an

uncertainty principle for matter waves similar to that for light.

UNCERTAINTY AND SINGLE-SLIT DIFFRACTION

Due to their wavelike nature, particles can undergo diffraction. To illustrate the
uncertainty principle for particles, imagine, for example, a beam of particles

represented by a plane wave propagating in the =X direction, as in Figure 611,

Figure 6.1 1. A beam of particles traveling in the x direction is represented by a plane
wave propagating in the x direction.
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In this plane wave, the amplitude or wavefunction, by definition, does not de-
pend on y or z, so the porﬂc‘les in the wave all have y components of momenta
equal to zero. However, since the wavefunction does not depend on y, one knows
nothing about the y coordinates of the particles. There is just as likely to be a par-
ticle at y = + 1 Im as at y == Om. So if the uncertainty in the y posiﬁion of the
particle is Ay, Ay = X . The y momentum, however, is definitely known: p, =
0, so the uncertainty in y momentum is Apy = 0.

Let us imagine making a measurement of y position. This we could do by put-

ting a slit of width a in the path of the beam of particles, as in Figure 6.12. Then

slit

Figure 6.12. A slit placed in the path of the particle beom causes the particles passing
through the slit to have their y positions measured to an accuracy of Ay 2 the slit width.

only those particles will get through whose y positions are somewhere inside the
slit. Thus, all particles passing through have had their y coordinates measured to
within an accuracy equal to a, the width of the slit. For these particles, the un-

certainty Ay is then roughly,
Ay ~ a (6.55)

On passing through the slit, the particles will be diffracted due to their
wavelike character. Experimentally, it is found that upon using a beam of many
electrons, a single-slit diffraction peak is observed which has the same form as
that observed for light. Most of the particles will go into the central diffraction
peak as illustrated in Figure 6.13. Thus, in order to account for the particles going
other than in the straightforward direction, we must assume that the particles
will have acquired some indefinite amount of y momentum in passing through
the slit. To make a rough estirnate of the uncertainty in this momentum, Apy, let
us assume that all the particles go into the central diffraction peak. Then the
maximum magnitude of the momentum p,, such that a particle goes into this
region, is roughly equal to the uncertainty Apy in y momentum. From the dia-
gram, if p = h/}\, and ﬂ is the position of the first diffraction minimum, it fol-
lows that, in terms of 0,

Proax = % sin 8 (6.56)

and so,

hsina

A

Ap, > (6.57)
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Slit

Figure 6.113. A beam of particles passing through a slit gives rise to a single-slit dif-
fraction pattern.

But from the study of single-slit diffraction, it is known that the first diffraction

minimum occurs at

A

2\ =asnf o a=- ° 9 (6.58)
2 sin
Thus, combining this result with Equation (6,57), we find that
hsin f A h
Ap.ra >~ 2"~ . _ ~ _ 3
SPy @ =Y 2sind 2 (6.59)

Since a is the uncertainty in ¥ position, a ~ Ay, we obtain the following rough

uncertainty relation:
h
Ap,Ay =~ 2

which is of the order of magnitude of Ii

In this hypothetical measurement of y position of a particle, an uncertainty in

y momentum is introduced by the measurement process. More rigorous calcula-
tions show that the correcl uncertainty relation is

Ap,A, >

y=r

NSt

In general, it can be shown that there is one such relation for each coordinate
of a particle, so we also have for the uncertainties, Ap, and Az, the relation
Apz AZ > W A, and similarly for Ap, and Ax. As in the uncertainty principle
for light, the uncertaintier,, Ax, Ap,, etc. are defined to be the root mean square
deviations from the mean. In our discussion above we used only order of magni-
tude values for Ay and Apy. Analyses of other kinds of measurements always
show that there are uncertainties in momentum and position connected by the

above relations.
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13 UNCERTAINTY IN BALANCING AN OBJECT

To illustrate one effec! of the uncertainty principle, consider the problem of bal-
ancing an icepick on its point. Let the icepick be an ideal one consisting of a
single particle of mass m concentrated at the position of the center of mass of the
icepick, with its point a distance { away. (Reasonable values for m and £ are
m = 100 g, and £ = 20 cm.) Classically, to balance the icepick one has to place
the particle exactly above the point of contact of the point with the tabletop,
and one also has to place the particle at rest. If the particle is not at rest, the
icepick will fall over because of the initial velocity. If the particle is not exactly
over the point of contact, gravity will make it fall over. This means that to bal-
ance an icepick, both the position and momentum of the particle must be exactly
determined. However, according to the uncertainty principle, both the position
and the momentum cannot be determined precisely at the same time, so if the
position of the particle is such that the particle lies exactly over the point, then
Ap > h/2Ax =< #i/Q. The uncertainty in momentum of the particle will become
very large; and hence the mcmentum will likely be large, so the icepick will fall
over. If the particle is exactly at rest, then the position of the particle is unde-

termined, so gravity will make the icepick fall over. (See Figure 6.14.) Thus, it is

Ax 0 Ax\Py=~h
\P, 0 R (falls)
(baland -~

—— X

Figure 6.14. The uncertainty prlnwciple implies that an icepick cannot be balanced on its
point, for both position and momentum of the center of moss would then have to be
definitely known, which contradicts the uncertainty principle.

impossible to balance an icepick on its point! It is not too hard to calculate
roughly the average time one c:an expect to keep the icepick on its poim if one

starts with the smallest possible AxAp; it is approximately
2 3
mgd
1 t s —92
4 g I
or about 5 seconds with the reasonable choice of { and m given above (see
Problem 6.15).

4 ENERGY-TIME UNCERTAINTY

It is also ordinarily true for particles, as well as for light waves, that AEAt ~ H.

One way to interpret this is as follows. Suppose a wavetrain, illustrated in Figure
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example

.. ,

At

Figure 6.15. Amplitude of a wove train passing on observer in time Af.

6.15, passes the position of the observer, and that the wave train lasts for ¢4 time
At. Then it is impossible to associate @ definite frequency with that wave train,
since it lasts only for @ finite time. The train can be thought of as a superposition

of woves of many frequencies and the spread in frequencies Av s roughly given
by AvAt = 1/27, since the coresponding spread in energies s AE = hAyp,
then to within an order of magnitude, AEAt 2~ h. For example, nuclear inter-
actions may sometimes be thought of os due to an exchange of 7 mesons. If the
mesons exist only for a time 1072 sec, then for AEAt 2=~ /2, the uncertainty
in their energy would be roughly 5 X ]O_m i0U|eS, or in electron volts,

3 x10%eV.

If a hydrogen atom with a diameter of about ]O_m m moves at about 103 m/sec,
considered as a wave train, it takes about '|O_|3 se¢ to pass by an observer; then
the spread in frequencies of the wave tram is in order of magnitude about 1013

sec"'. The uncertainty in energy is roughly,

h 107

— = 3 = 1 0_2] joules
10 107

In electron volts, this uncertainty in energy is ]0—2]/],6 x 107" = 0.006 eV.
This uncertainty may be compared to the average thermal energy of an atom in
a gas of hydrogen atoms at room temperature, around 293 K, which is I(BT, with
kﬂ = 1.38 x ]0‘23 j/K. The uncertainties are about the same to within an order

of magnitude.

6.15 PROBABILITY INTERPRETATION OF WAVE FUNCTIONS

Since particles have waves associated with them, one might expect a wavefunc-
tion \,ﬂio exist which could be used to describe whatever quantity it is in o particle
which is wavelike. One should be able to describe such phenomena as diffrac-
tion through @ slit in terms of this wave function. If one performs a single slit
diffraction experiment with a beam of electrons, in which the intensity of the

beam is so low that only one electron should go through the slit system at a
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time, then the electrons as they pass through seem to go randomly in various
directions. Thus, it appears that we cannot predict exactly where any one elec-
tron will go. However, it is found experimentally that after observing many elec-
trons, the probability with which they go into some small range of directions is
just proportional to the calculated diffraction intensity for waves. For |ighi waves,
the same thing happened; the diffraction intensity was found experimentally to
be proportional to the probability of finding a photon in the small range of
angles. In that case, if \& is the wavefunction describirig the light wave at the
screen, the intensity is proportional to \ﬁ 2. It is thus natural to assume that for
a particle there exists a wavefunction \Z/ such that l \L 2 proport.ionql to the
probability of finding a particle near a point.

Thus, one cannot predict the position of any one particle, but with the wave
amplitude, ¢, one can say that the squared magnitude 1,0(0) 2 times some
range dﬂ of the continuous variable 0 is proportional to the probability of find-
ing a particle in the range of posi’rions d0 Therefore, \// for particles is called a
‘probabilify amplitude. No better interpretation has ever been found for yl/

Suppose we had a double slit set up so that, as in Figure 6.16 at the observa-
tion point P at 9, the probability amplitude for finding a particle is ¢‘1 when

Figure 6.16. Wavefunctions ¢/] and Y, from two sources add at P.

slit 1 only is open, and ¢2 when slit 2 only is open. When both slits are open, it
is observed experimentally that if the beam intensity is high, so that there are
many particles incident on the slits, then the usual double-slit intensity pattern is
seen. If the beam intensity ¢ so low that only one particle at a time can go
through the slits, then the individual particles passing through go off in various
directions. However, after Obfie‘rving for a long time, it is found that the prob-
ability with which they go into some range of directions dﬁ is just proportional
to the calculated diffraction intensity for waves. We may conclude that these
waves obey Huygen’s principle, and that they obey the principle of superposi-
tion. Then to explain mathematically the double-slit diffraction pattern which is
actually observed when both slits are opened, the total probability amplitude at
P must be

Y=y + (6.24)
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and the probability for finding @ particle in d0 will be, in terms of y’/) and W;,
proportional to 1//]+ ¢2 2d0 If we have @ wavefunction or probability
amplitude w(x) which is a function of the single position variable x, then the
wavefunction can be used to calculate the probability density, so that the prob-
ability of finding a particle in the range dx will he given by 1[/ de. Sum-
marizing the properties of the wavefunction 1[/ which describes the wavelike prop-

erties of @ particle, we can say:

(1) The wavefunction y/(x) is called a probabilty amplitude because the abso-
lute magnitude squared of the wavefunction ¢<{x) 2, times the differen-
tial dx, is proportional to the probability of finding a particle within the
range of coordinates dx.

(2) The probability amplitude obeys the principle of superposition: e.g., if
l,b} (x) and gb;(x) are the wavefunctions when slit 1 only is open and when
slit 2 only is open, respectively, then when both slits are open, the wqve-
function is the sum 1,[/] (x) + ¢;(X) and the probability of finding a

.

particle in dx is proportional to

Ya(x) + Ya(x) Fdx

6.16 EIGENFUNCTIONS OF ENERGY AND MOMENTUM OPERATORS

Since particles have wavelike character, in effect, it is possible for a particle to go
through both slits of a double slit system, and interfere with itself in doing so.
This is @ type of behavior which is impossible to explain on the basis of simple
mechanical laws of the type, F = dp/dt, Therefore, we must find an equation
which describes the behavior of these probabilty waves. This equation should be
a wave equation of some kind, but in situations where +h can be considered to be
negligibly small, it should predict the same results as ordinary mechanics based
on F = dp/df. We shall now discuss this wave equation.

There are a number of criteria that the wave equation must satisfy, which will
give us some clues QS to what form the equation must have. For example, the
equation must be consistent with the previously discussed wave properties of
particles moving through free space and passing into a refractive medium. Also,
it must agree with Newtonian mechanics in some limit. We will obtain the wave
equation by analogy with the equations of motion of ordinary mechanics.

Let us first try to find o wavefunction \‘b which corresponds to a beam of par-
ticles of exactly known momentum. This function will be called a momentum
eigenfunction, and the corresponding value of momentum will be called the
momentum eigenVCIIUe. Thus, consider a wavefunction describing a beam of
particles which are traveling with exactly known momentum in the positive x
direction. In this hypothetical situation, the uncertainty in x momentum is zero;
so by the uncertainty principle, the uncertainty Ax in the x positions of the par-
ticles is infinite. Hence, the particles are spread out all along the x axis. If there

are no spatial boundary conditions such as reflecting walls, which could rnake
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some x coordinates |3referred over others, and if the particle beam is prepared
so that it is of uniform inTerIS\ify, then there should be a completely uniform dis-
tribution of particles along the x axis. Thus, the particles must be distributed with
equal probability everywhere along the x axis, and the square of the wave-
function, I y//(x,f) ’ 2, must ke a constant, independent of x.

‘This means, for example, that ¢(x,f) could not be of the form of a sine or
cosine function, because then lﬁ(x, t) [ 2 would be a varying function of x. How-

ever, ¢(x, f) could be of a complex exponential form, say:
Y o= AettD (6.60)

. . - 2 2 . .
where A is a constant. This satisfies ‘ lﬁ' = IA‘ = constant. If this function
is to describe a wave with phdse speed w traveling in the positive x direction, the

phase q)(x, t) must be of the form:
P(x,t)= f(x —wt) (6.61)
where, so far, f is some arbitrary function. Therefore,
Y o= Ae't (6.62)

We also know that the particle speed must be equal to the group speed of this
wave. Then, if the function 1,[; corresponds to an exactly known group speed, the

momentum will be known exactly. In Chapter 1 the expression Vg = dw/dk, for
group speed, was derived for a packet of sinusoidal waves grouped closely
about a central frequency, V= w/27. The expression vg = dw/dk becomes exact
in the limit as the frequency spread approaches zero. Hence, for a packet of
known momentum, we need to consider a wave of definite frequency, but with
zero frequency spread. A phase f(x —wt) = kx — wt= 27 (x/A — vt) would

then correspond to an exactly known group speed and hence to an exactly
known momentum. Let us check that this group speed is correct. Since w2 -k %2

is a constant, using E = 'ﬁw, p = ﬁk, we have

y, = M _ ket = = me (6.63)

= = 2

dw  ke?  hke?  pt mVc?
e dk w hw £ mc

for a particle with energy mci and momentum mYV, The wavefunction then takes

the form:
w — Aei(kx—w') (664)

Since the connection between momentum and wavelength is p = h/)\, and
that between energy and frequency is E = hv, the above wavefunction could be

written in terms of momentum B and energy E as follows:

Y = se i(2n/h)( PX=Et) (6.65)

Y = Ae'lPmEIA (6.66)

This wavefunction represents a wave of definite wave length, traveling in the

x direction, which means that the x component of momentum is definitely known.
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6.17

x— £t/ satisfies all the requirements for

We see that the wavefunction ¢ = Ae"“D
it to represent a beam of particles of definite x momentum. Only a complex
wavefuncﬁon of this form can have the correct probability inferpreta'rion—
that l// 2 is a constant representing particles whose positions are completely
wnknown. Also, the frequency is definite, which means that the particle velocity V,

which equals the group speed Yg o has a definite value.

EXPECTATION VALUES FOR MOMENTUM IN A PARTICLE BEAM

In practice, waves wil usually consist of superpositions of perhaps many different
frequencies, and hence many different momenta. We might be interested in the
average value, or expectation value, of the momentum. To see how this may be
calculated, suppose there were two sources of pcrﬁc:les, as in Figure 6.17, each

1

N I I S .-
Source 1 rrrrernndie 3

L1

1
Source 2 _— Rasanananns i Y
-

Figure 6.17. Considerotion of the superposition of two beams of particles of different
momenta gives rise to differential operators representing observable physical quantities.

producing uniform beams traveling in the x direction, with 1//1 the wavefunction
from source 1 when source 2 is off, and ¢2 the wavefunction from source 2 when
source 1 is off. Then the tctal wavefunction 1‘&7 when both sources 1 and 2 are on

is, by the principle of superposition,

vro= ¥+ ¥ (6.67)

The probability of finding a particle in dx with both sources turned on would be

equal to
Yro+ Yo dx

This interpretation must still be valid, even when the sources do not produce
electron beams of the sgrme momentum. So let us assume the individual wagve-

functions are:
¢] - A]e”lpl"’fl')ﬁ" ¢2 — Azei(p2x~52l)/ﬁ (6.68)

where A1 and A; are constants. Then A, 2dx would be the probability of
finding a particle of momentum P in dx when source 2 is turned off. Simi-

larly, A2 2dx is the probability of finding a particle of momentum P2 in dx
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when source 1 is turned off. ‘The total probability of finding a particle in some

interval 0 < x < L when both sources are on would be proportional to

ll¢\+ Yo Zdx = /()-C’X{l¢1‘2+ lkbzl LIPSV SV 2 S 2% (6-69)

In this expression, the asterisks mean complex conjugates. Consider these inte-

) . 2
grals one at a time. In calculating lﬁ‘J , all the x and ! dependence goes out,

because ei(p‘xAE")/hlzz 1. so,
L
j dx ¢ 1= A U (6.70)
¢
Similarly,
~L
| dx ¥, 2:- A %L (6.71)

However, when calculating «an integral like:

L . N
f dxi, = [dxAFA, exp '(_p‘; pa)x | i(E ; 2L BN
]

if we assume | to be large and P is not equal to P2, then the exponential will
oscilate so that on the average the x integral wil be zero. (This is in agreement
with the general considerations in Appendix 2.) We shall assume this happens

here. Then, for large L, we have:

] dxfyis + Y} =0 (6.73)

0

Thus the total probability of finding a particle in the interval 0 < x < [ is

equal to
L
f\l}'/r|2dX:L(‘Al‘2+\Azf2) (6.74)
[

This is just the sum of the probabilities for finding particles of the two momenta
in the interval, as we might have expected.

Since ‘A, \2 is the probability of finding a particle of momentum p;: in the
interval, and }A; %5 the probdbi“fy of finding a particle of momentum pj in
the interval, then the average value, or expectation value, of the momentum of

this beam of electrons should be:

P AL AL
A L om U

P (6.75)

In the above expression, the factors | all cancel out, ¢ the expectation value of

momentum reduces tc:

pi A P+ pal Ay
= IA,‘2+‘A2‘2

Q)

(6.76)

independent of the interval considered, provided it is sufficiently large.
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6.18 OPERATOR FORMALISM FOR CALCULATION OF MOMENTUM

EXPECTATION VALUES

Now we shall demonstrate a simple formal way to calculate expectation values
which agree with the expression in Equation ({6.76), using the wavefunction .
Consider the wavefunction IP] , which has a definite momentum P Let us dif-
terentiate the exponential function ¥, = Ajexp [i( p1x  Eyt)/h] with respect
to x, keeping t constant. Since for any constant a, we have

-a—e"‘ = ge”™ (6.77)
ax .
it follows that
d Ip]
— ) = —— N 6.78
axtﬁ](x ) . b (x, 1) (6.78)

We may write this last equation as

ﬁ? —,d_ 1{x, 1) = pra(x,t) (6.79)

1 dx
The constants h/i, multiplied by the x derivative of 1//, have the effect of multi-
plying g!/ by a number equal to the x component of momentum. If Eai 1//] =
1 Ox
p1¢’1, where p) has exactly the same numerical value for all values of x and
t, then we can say that the wavefunction represents a state of definite momen-
tum. If the effect of the differential operator (h/i){d/dx) on the wavefunction
were to give something other than p; ¢1 , then we could not say that the x mo-

mentum had the value [

The operator (h/i)(3/dx) is ordinarily called the p, operator, or momentum
operator, or p,op. When this operator acts on a function and gives a constant
times the same function, the function is called an eigenfunction of the momentum

operator. The constant is called an eigenvalue.

example Which of the following functions are eigenfunctions of Pxg, and what are the

solution

corresponding eigenvalues? (a) yba = sin kx; (b) lﬁb = exp(—67r ix/L); (c) ¢‘c =

In(x/L).
Only 1,’/;, is a momentum eigenfunction:

h gy _ ﬁ( 67Ti>¢b - _97{2‘“

L

i dx i

So the eigenvalue is p, = —67h/L. Y, and {, are not eigenfunctions, because

when differentiated they do not yield a constant times the same wavefunction:

A d
T'iﬂ = — cos kx # const. x ¥,
iodx
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1
- —— & =~ # const. X tﬁc
| Ox X

The eigenvalues p, and p; corresponding to g[/a and l//,s therefore, do not exist.

In the case of Figure 6.17, with superimposed beams of different momenta, if

the momentum operator acts 0n the total wavefunction,
lrl/T - ’l/l + ¢2 — Alei(m!*f]')/ﬁ + Aze“'(lﬂz)“fz')/ﬁ (6.80)

then it does not give just a number times ‘,Z/T; instead, the effect is:
H 9
Proo¥1 = i W + ¥2) = pid + paye (6.81)

Hence 1,[/1 + lﬁ; is not a momentum eigenfunction. Now, multiplying the above

equation on the left by g&f and integrating from 0 to L, we get:

L L
f d’“#?rpxoplpr = J[ dxlpil AVl 2 + pal A2l 7 + Wipads + UFpith}
0 o

(6.82)

When we integrate over some large length |, the righthand side of this equation
has two terms which average to zero, because if p;# pj, they oscillate sinus-

oidclly with changing x. Then the remaining two terms give:

!
]dxx,b?p,w\j/,: Lipy Al%s palAgl?®) (6.83)
0

Thus, from Equation (6.26), we have:

L
dxd¥p,
‘A ¢Tp°p¢1 Pl A1|2+P2 A, i
l . A 2 4 1 N 2
A dxyi? ;

This is just the expectation value of momentum given in Equation (6.76). Thus,

(6.84)

expectation values may be written concisely in terms of operators. The procedure
would still hold if the total wavefunction 1// were a superposition of many mo-
menta rather than iU‘st two. Thus, in general, the average x component of

momentum per particle for particles in the interval 0 <x <[ is:

L
[ ven e
0

(6.85)
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6.19 ENERGY OPERATOR AND EXPECTATION VALUES

Energy eigenfunctions con be discussed in a similar way. The wavefunction ¢ =
exp(ipx = iEt)/h is a wavefunction representing particles of definite known
energy. On differentiating partially with respect to time, keeping x constant, we
get:

a —iE
-5;4/ = <-?1—>¢ (6.86)

This equation could be written as:
. 0
IEE"’/ = EyY (6.87)

Since this is true for al x and t, the wavefunction represents particles of definite
energy E. We could define an energy operator on the basis of the above equa-
tion. It would be:
4 0 .
E, = ih = (6.88
op ai 6.88)
A function is said to be an eigenfunction of an operator if the effect of the
operator acting on the function is to give a constant-the eigenvclue-——mulﬁ-
plying the function. An eigenfunction of the energy operator iha/af would be
—iEt/h
Ae
Just as an expectation value of momentum could be written in terms of mo-
mentum operators, so can an expectation value of energy be written in terms of
EOP. The expectation value of energy for particles in the region 0 < x < L when

L is large, if the wavefunction is 1,[/ and the energy operator is iﬁa/af, is given by:

E) = f z,b*iﬁ% Ydx /f"lp*xpdx (6.89)

Clearly, if ¢ is an eigenrtate of the energy operator, then the expectation value
of E is equal to the corresponding eigenvalue. An expression such as (6.89) can
be interpreted in terms of probabilities; if P(x)dx is the probability of finding a

particle in dx, then the average of some property f(x) is just

P(x)f(x)dx
<f> = ‘[7("%*;;)— (6.90)

In this case, _/P(x)dx is analogous to flﬁ*ll/dx, so P(x) is analogous to ¥*Y.
Also, if f(x) is represented by some operator f,,, then P(x)f(x) is analogous to
42

These rules for computation of expectation values of a physical quantity have
shown that the combination of quantities w*fop‘ﬁ should be used rather than

some other combination, (For example, fop(¢’*gb) would be incorrect.)



6.20 Schrodinger equation

We have defined differential operators for momentum and energy, given by
Equations (6.79) and (6.88). .Similctr|y, for y and z components of momentum, we

could write:

d
Pch = ‘a_y H P, =

h
i

—a3t
Rl

(6.91)

op

In summary, when an operator acting on « function has the effect of multiplying
that function by a constant, this constant is said to be the eigenvalue of the
operator, and the function is said to be an eigenfunction of the operator. The

wavefunction e/ (Pxx—EV

represents a beam of particles of definitely known
momentum p,, and definitely known energy E. It is also an eigenfunction of the
operators p,,op and E(,p. The eigenvalues are just the physical volues of the mo-
mentum and energy, respectively, for this particular beam of particles.

When the wavefunction is not an eigenfunction of p,(op, the expecTGTiion value
(average value) of 1he X component of momentum may conveniently be calcu-
lated in terms of Equoﬁons (6.85) and (6.89). These mathematical expressions
are important, because there are many times when we dQre interested in particles
not having definite momentum or energy. Then the operators allow us to compute

expectation  values.

SCHRODINGER EQUATION

Now that the energy and momentum operators have been introduced, we can
attempt to find a wdave equation that the wave function of a particle should
satisfy. Suppose we consider a number of regions separated by parallel planes
with a constant potential energy in each region. If @ particle moves perpendicu-
lar to the separating planes, we need consider only the dimension parallel to
the particle’s motion. Calling this the x direction, we then have the potential
energy graph shown in Figure 6.18, where regions |, Il, lll are the constant po-
v

—
S o T

Figue 6.18. Graph of a potemial energy curve which consists of a number of constant
potentiol energy regions.

tential energy regions. In any of these regions, it should be possible to have a
wavefunction which is a momentum and an energy eigenfunction. That is, in

terms of momentum p, and energy Er,

#/T = ei(px’“ET')m' (692)
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In the expression for ¢ we have now written E; for energy to imply total energy
including rest energy. Thus, Ey = moc2 + E, where E is the part of the energy
not including rest energy. That is, for low-energy particles, E is the total energy
in the nonrelativistic sense, kinetic energy plus potential energy. Let a wave-
function be written in the form Y; = Y(x, 1) exp (—imgc?t/h). It is convenient to
use ¢(x,t) here instead of ¢T, because then the rest energy need not be con-
sidered explicitly. This is ordinarily done in non-relativistic quantum mechanics.

The energy operator acting on ¢7 gives:

9 ) —imec’t —imgc?t
ih%: ih% + moc’yY | exp $->= (E + moc2)¢exp _ﬁo_)

(6.93)

After cancellation of the terms in m0c2 and the phase factor exp(—imoc2f/ﬁ),
the above equation can ke written as:

w2

a1 EY (6.94)

since ih d/dt acting on Yy is the operator for total energy, the operator
ih 6/("” acting on ¢ can be interpreted as the operator corresponding to the non-
relativistic total energy, ih 9/dt = E,,.

Now we are in a position to obtain a nonrelativistic wave equation. A wave
function \ﬁ which is an eigenfunction of pxop and Eop, with eigenvalues p, and

E, is given by
Vo= Ae'ler B (6.95)

It should therefore be p‘ossib|e to find a solution of this form, of the general
wave equation, in each region of constant potential energy (Figure 6.18). Of
course, p, varies from region to region, while E must remain constant if energy

is conserved. The nonrelativistic relationship between p,, £ and V for a particle
of mass m is

- .
o (6.96)

We shall assume that this same relationship holds in quantum mechanics if V is

constant. Using p, and E a differential equation which leads to this re-
op

op ¢
lationship for the wavefunction of Equation (6.95) is:

1

o (p,op)zglx + Vi = E ¢ (6.97)

or writing out the differertial operators in full,

2 2 .
N LA SRV 4

. (6.98)
2m 0dx at
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2
Here the operator <5—> means that the function upon which this operator acts
X

is differentiated partially twice with respect to x:

9?2 92
<5> Y = ax—f (6.99)

Thus, for example,
L} / 2 2
n_ T -) a eipxx/ﬁ = <_Px ) eipxx/h

6.100
2mo 1 dx 2m, ( )

Suppose next that ¢ were o combination of energy-momentum eigenfuncﬁons,
corresponding to different energies E,, such as

Vo= D At (6.101)

Each ond every term in this superposition satisfies the differential equation,
Equation (6.98), in the constant potential energy region, provided

2

Pi v o E; (6.102)
2m
Therefore, any wavefunction describing motion of a particle in a constant poten-

tial energy region should satisfy the differential equation, Equation (6.98).

SCHRODINGER EQUATION FOR VARIABLE POTENTIAL

We shall assume that for a continuously variable potential energy, V(x), the dif-
ferential equation still holds. This is reasonable but not rigorous, since in a certain
sense, a continuous potential energy can be thought of as a large number of
narrow constant potential energy regions.

In three dimensions,, the relation between energy and momentum is:

2
p

1 2

— 4+ V=— (pitpr+p+V=E (6.103)
2m 2m

By the same line of argument which led to Equation (6.98), the differential equa-
tion arising from this would be:

1 2 2 2 _
om (Pxop + Py, t onp)¢ + VY = Ep (6.104)

or

K foy?  o? 9? 9 .
__<_¢2_ + __‘é ___‘_f_ F VY= iﬁ_ll/ Schrodlmge (6.105)
2m \ox dy 0z ot equation

This is called the Schrédinger equation, after Erwin Schrodinger who first pro-

posed it. While our discussion rnakes Equation (6.105) appear to be a reasonable
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wave equation, the equation’s correctness depends ©On whether or not it predicts
the experimental results. As will be seen, it agrees with experiment to a high
degree of accuracy; examples of this will be given in Chapter 8, on the hydrogen
atom.

In the Schrb'dinger equation, the operator,

2m

K <62 8’ | %)
ax?  ay?  az?)

has the physical significance of the kinetic energy operator. In three dimensions,
the wavefunction 1,0 is a function of x,y,z and t, and the probability of finding
¢ particle in the volume element dxdydz is \l/ 2dxdydz, Hence, extending the
formalism for calculation of expectation values, for ‘example, we would expect
that if the wavefunction is normalized to unity, the expectation value of the

kinetic energy would be
2 2 2 2
y'z*ﬁ—— Iy + 39_5[; + 8—1'2{/- dxdydz
2m \ 9x? dy dz

If more than one particle is present, the relationship between the momenta and

the total energy is

2 2 g
X Pz .+ Py (6.106)
2m,  2m, 2m.

and the Schradinger equation is obtained by the following prescription:
9 9’ 9’
Replace p% by -h? —,;+—,2'+ —
aX‘f ayl 621
R A

2
by -m{L + L+ L),
Pz BY <an ayd | a2l

92 9? 92

2 2

o b —h — 4+ — + —|;
P Y <6xﬁ 6y§ dz>

and let all these terms operate on the wavefunction gﬂ, which is @ function of all

the variables:

Vo Y, y1, 21, %2, ¥2,22 1., Xa,¥n,Zn, 1) (6.1107)

Similarly, to find a relativistic wave equation for one particle, we can use the

relativistic relationship between energy, potential energy and momentum. This is

pic’+  mic'-  (E-V) (6.108)
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Here E; includes the rest energy, mocz. The corresponding wave equation is

92 92 8?
_hzc2<a‘[y + a“bz' + a‘?) + mocty;
X y z

2
= (iﬁ-a— - v)’ﬂp, = —h’é—‘& - QiHV% + Vi, (6.109)
at It? ot
if V does not depend on t. This is called the Klein-Gordon equation. It does not
have spin (intrinsic angular momen'fum) appearing in it, and it applies to spin|ess
particles. Another relativistic wave equation, called the Dirac equation, which
has spin included, applies tc relativistic electrons. We shall consider in detail only
the Schrodinger equation.

The wave equation, Equation (6.105), d escribing the propagation of matter
waves, is the equation we obtained from considerations of conservation of
energy. After elimination of the rest energy, the equation in one dimension takes
the form of Equation (6.98). Although Equation (6.98) was shown to be true in
a region where V is constant, QS already noted, it is also true when V is varying.
If the consequences of this equation turn out to agree with experiment, then we
can be satisfied that the Schrodinger wave equation is valid. In the next sections

we shall study some simple properties and consequences of Schrédinger's

equation.

.22 SOLUTION OF THE: SCHRODINGER EQUATION FOR A
CONSTANT POTENTIAL

Let us consider a state of definite energy E, so that

ih%"k = E,¥ = EY (6.110)

Here E is the total kinetic + p4o1'enfia| energy. The equation

m%% - By (6.111)
must have a solution of the form:
o= P(x)e "7 (6.112)

When this is put back into the Schradinger equation, all time dependence will

cancel out, and the equation wil be one for the spatial part of the wavefunction,

K2 d?®(x)
—% -—";("2— + Ve (x) = ECI)(X) (6.113)

This is a second order differential equation, which cnn be written in the form:

d?®(x) . 2m(E — V)

— 7 P(x) = (6.114)
X
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6.23

In this form, it is very similar to the differential equation for simple harmonic
motion, which, for a displacement ®(t), is
d*®
di?

+ WP = (6.1 15)

In our case, however, £ -V may not always be a constant, since the potential
rnay vary with x. So in general, the solutions may be difficult to find. Suppose,
however, that in some range of x, V is constant. Then we can put
2m(E = V
k? = ———(—-2——) 6.1 16)
h

and k wil be a constant. We can then solve the Schwr&idinger equation by anal-
ogy, for the general solution of Equation (6.1 15) can be written in either the

form:

¢ = a sin wt+ bcoswt (6.1 17)

with a, b arbitrary constants, or in the exponential form:

b = Ae™ + Be ' (6. 18)

where A, B may be complex constants. This latter form is allowed in our case,
because the wavefunction (I)(x) may be complex.
By analogy, then, in terms of
2m(E —- V)

k = —‘_ﬁ—z— (6‘ 19)

tor k constant, a general solution for the wavefunction (I’ (x) is:
d(x) = Ae™ + Be ™ (6.120)
This is simply a superposition of momentum eigenfunctions discussed previously,
with k = p, /h
Thus, when E > V, we expect oscillatory solutions in space. What happens
when E < V? Although this case would appear to violate our intuitive feeling
that kinetic energy should be positive, it is still possible to find a wavefunction
which satisfies the wave equation in a region of such high potential energy. The
quantity k = \/Qm(E—mqefined in the previous frame becomes pure
imaginary: k = ik = i\/%(v E)/h®. Then ik := ¥k, and the general

solutions are of the form of increasing or decreasing exponentials:
P(x)= Ae”+ Be™ (6.121)

where the arbitrary constants are A and 6.

BOUNDARY CONDITIONS

‘The arbitrary constants which appear in these solutions are determined by means

of boundary conditions, which are special conditions placed on the wavefunction
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due to the particular physical situation in which the particles find themselves.
Suppose, for example, that the system is set up so that it is impossible for a par-
ticle to be found in the range of positions X > Xg. Then the probability, lﬁ 1
(I) 2, of finding a particle in the range of X > Xg must be zero, and so we

would conclude that:

d = 0 for x > Xg (6.122)

Next, let us consider the behavior of lﬁ in a transition region where V is chang-
ing very rapidly from some value V1 to some other value V. Suppose, for sim-

plicity that the bounclory of tlhese regions is at x = 0, as in Figure 6.19. In
v

x=0

Figure 6.19. Potential energy curve for V(x) = V; = const. x 0; V(x) = const. x 0.

region I, V = Vi, the wavefunction will be of the form b, = Ae“‘"‘ + Be’”“', a
superposition of momentum eigenfunctions. In region Il, where V = V; and the

corresponding wavenumber is kg, the wavefunction will be of the form:
: ik —ik
P, = Ce"2" + De 2" (6.123)

The value of the wavefunction at x = 0 in region Il is related to the value of
the wavefunction at x = 0, in region |, just on the other side of the boundary, by
iwo boundary conditions which give us two relations, between the constants
A B, c, D. The two boundary conditions are:

(1) The wavefunction is continuous across the boundary:

12 ‘,(:0 = Y

(6.124)

x=0

b | _, = Py (6.125)

x= x=0
and

(2) The derivative of the wavefunction is continuous across the boundary:

a a
—.ﬁ = ] (6.126)
Ix | _o Ix Ve

or
&@, 6¢”
ball = N (6.127)
ax | _, ax | _,
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To understand the reosons for these two conditions, suppose 1,0 changed nearly
discontinuously across the boundary. This would be the same as having a slope

which is arbitrarily large at the boundary, as in Figure 6.20. The sudden increase

v
N
x
A\N\J\Slope = C
Figure 6.20.

in the slope, al,b/ax, would in turn mean that azw/&xz would have to be very
large. Likewise, if the slope were discontinuous at the point, 621,0/6x2 would be
so large as to be undefined at the point. However, if the potential energy and ¢
do not become large at the point, Schradinger's equation tells us that 82¢/6x2
does not become large at the point. Thus, if the wave equation is to be satisfied,
Y and dY/dx must be continuous.

A useful analogy might be to consider two strings of different mass per unit
length, tied together and sustaining wave motion while under tension. It is ob-
vious that the displacements of the strings on opposite sides of the knot would be
the same. This is analogous to continuity of the wavefunction representing “dis-
placement” of a matter wave. Also, it is easy to see that the slopes of the two
strings on each side of the knot would have to be equal (if the knot is mas;sless);
otherwise, there would be an unbalanced component of tension acting on the
knot and producing an infinite acceleration. This is analogous to continuify of
slopes of the wavefunction.

Since the one dimensional Schradinger equation is of second order in the de-
rivative with respect to x, if the values of xl/ and 6¢/lax are specified at one point,
and there are no discontinuities, a unique solution can be found by integration.
Sothen a given physical situation can be represented uniquely by a wavefunction.

Another condition on the wavefunction is that, as X, ¥, Z go to infinity, \l/ must
not approach infinity. Ctherwise, |'¢ | 2 would give infinite particle densities, or
else lead to infinite total probability. In fact, for particles which are restricted to
a limited region by some binding force, the wavefunction approaches zero at

infinity. A number of examples of these ideas wil be studied in the next chapter.

suminary

PROPERTIES OF PLANE WAVES

A plane wave may be represented by a wavefunction of the form e'(k"_"’”;

the phase k . t — wt is a relativistic invariant. It follows that the propagation
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vector K and frequency saﬁs;fy the following transformation equations between

inertial systems:

' w '
kl = —~ !CT k, = k,
U — (w  vky) ki = k,

V1= Vel
These equations imply that o): - kz/c2 is @ relativistic invariant, and hence that
the equation wV = c2 is invariant, Here, w is the phase speed of the matter wave

w = w/k, and V = dw/dk is the group speed of the particle with which the

wave is associated. V i3 identical to the particle velocity.

DE BROGUE RELATIONS

The momentum, propagation vector, and wavelength of a particle (de Broglie

waves) are related by
h
A
and energy and frequency are related by
E = hw = hy

where % = h/2x; h is Planck’s constant.

DAVISSON-GERMER EXPERIMENT

In the Davisson-Germer experiment, electrons were scattered off nickel. The
existence of diffraction peaks showed that a wavelength was associated with the
electron, and the position of the peaks showed that the wavelength was con-

sistent with A = h/p, where h 15 Planck’s constant.

UNCERTAINTY PRINCIPLE FOR PARTICLES

In any experiment in which both the x component of position and momentum are
measured simultaneously, the uncertainties Ax in position and Apx in momentum

satisfy the inequality,
Ap,Ax > H/2

where Ap, and Ax are rms deviations from the mean. Similarly, in a measure-

ment of energy which lasts for g time At,

AEAt >~ h
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PROBABILITY INTERPRETATION OF WAVEFUNCTION

Associated with a material particle is a wavefunction l// In one dimension,
l¢ | 2dx s promr ionq| to the probability of finding the particle in the range dx.
If 1&1 is the probability amplitude, or wavefunction,. for particles from source 1
alone, and lﬁz is that for source 2 alone, then when both sources are on, the total
wavefunction is obtainec by superposition of the individual contributions, and is

\ﬁ] + \bz- The total probability of finding a particle in dx is then proportional

o ¥+ ¥r Zdx

ENERGY AND MOMENTUM OPERATORS

The momentum P of a particle can be represented by the differential operator:

Prop = 78X
The energy operator is:
. 0
E,, = ih-—
°p ot

When an operator acts ¢n a function to give a constant multiplied by that same
function, the function is said to be an eigenfunction of that operator and the con-
stant is called the eigenvalue. The function '¢/ = Ae i(pxx—Et)/h is an eigenfunction
of both pap ond E_pp, with eigenvalues p, and E, respectively. For any state of
indefinite momentum or indefinite energy, the average value or expectation value
of the momentum may conveniently be calculated in terms of operators as

follows:

J¥*p.,, bdx

e

<E> _ f\[/*Ec‘p‘pd"
J*ddx

SCHRODINGER EQUATION

After eliminating the rest energy, the nonrelativistic: wave equation satisfied by
the wavefunction lﬁ(x, Y, 2 t), describing a particle having a potential energy
V(x, y, z), is obtained from the conservation of energy equation:
2
E=(2)+v
2m
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by replacing all the quantities by their corresponding operators and allowing
them to operate on the wavefunction. In one dimension, the wave equation is:
. 2
c'\,l 1{h 9

pc AR S (LA A + VY
df 2am \j dx 4 v

BOUNDARY CONDITIONS

(1) The wavefunction is continuous across a boundary at, for example, X = 0:

¥

/
x=0 = 2 x=0

(2) The derivative of the wavefunction is continuous across the boundary:

A o

d0x ieo = Ox

0 x

)
o

(3) The wavefunction remains finite or goes to zero as the coordinates go to

infinity.

problems

1. Use Equation (6.22) to derive the general Doppler effect; assume that in one frame,
light of frequency v is propagating at angle f relative te the positive x axis. Show
that in another frame, moving at velocity v along the x axis relative to the first frame,
the frequency observed is

'

1 - ycos e/c
o=

\/—-v/c

Usew = 2mv = kc.
2. If the group speed, vg = dw/dk, and phase speed, w = w/k, are related by
VW = cz, where ¢ |5 a constant, find the most general relationship between w

and k.
2 2.2
Answer: w° = ¢ k“+ constant.
3. Suppose that in the tree particle wave function, ¢ = gt _ ilpr Epih e

nonrelativistic kinetic: energy, 2 mv2 = p2/2m, were incorrectly used for E; What
would be the relationship between the momentum p and the group speed? Find the
relationship between the groJp speed and phase speed, w.

Answer: p = mvg; w = lavg,

4. An electron (mass = .91 x 10 "30kg) moves at a speed of 2 x 1 Oam/sec in a
region where the potential energy is zero. It hits the plane boundary of a region
where its potential energy is = 4.1 1 x 10~ ™ ioules at an angle of incidence of 60
Find its angle of refraction.

Answer: 30'.
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10.

11.

12.

13.

14.

15.

What are the phase speed and wavelength of a proton moving at a particle speed,
(a) 100 m/sec (b) 2 X 1 Oam/sec?
Answer: (a) 9 X 10“m/sec, 3. 96 x]O_gm,:

(b) 4.5 )<108m/sec, 1.477 x 10" P m.
An electron is accelerated through 50,000 volts in an electron microscope. What is
the smallest distance between objects that could possibly be observed?
Answer: 5 x 107 %¢m.
What is the kinetic enargy in electron volts of electrons in a beam incident at Qr angle
of 30” relative to a crystal surface, reflected coherently from planes 2 angstroms
apart? Assume this is the fourth order reflection, that the planes are parallel to the
surface, and that no wavelength change is suffered upon passage into the crysfv_]l,
Answer: 201 eV.
Electrons hitting a metal target produce X rays with a minimum wavelength of 1
angstrom. What is the electron wavelength?
Answer: 1.1 x 107° cm.
What is the ratio between the wavelengths of 1 09 eV electrons and 109 eV photons?
Answer: 1 4+ 13 x ]077,
For —&ng&lthe wavefunction of a particle is g&: a( &2 X2>eikx~iwl.
If ‘\b ‘ 2 s a probability density, find a. Find the expectation value of the X com-
ponent of momentum.

15

i—‘ itk
For the wavefunction of Problem 10, find AxAp,, where Ax and Apx are rms devia-

tions from the mean.

Answer:

5
Answer: h — = 0.5986 > h/2.
| 114_

An electron gun’in a TV tube has an opening of diameter @, Electrons come out with a
speed ¥ of 100 m/sec, and the distance to the screen is L = 1 meter. What should the
diameter a be in order to minimize the size of the spot on the screen if there is no
focussing? Take into account that uncertainties in the position of electrons at the
screen arise both from uncertainties in the initial position of the electrons within the
gun and from diffraction.
Answer: a = h—L = 0.11 cm.

my
What is the minimum possible kinetic energy, consistent with the uncertainty principle,
of a proton confined te a region of size 5 x 10_15 meters, which is the opproximote
size of a nucleus?
Answer:  About 0.83 MeV.

A particle of mass m MmQves along a vertical wire in the gravitational field of the earth

above a rigid impenetroblefloor, which is at height X= 0. Hence, the particle’s

height is always greCI'rer than zero and its potential energy is mgx. Using the uncer-

tainty principle, estimate the lowest possible energy of the particle. Do you think this
energy is observable?

Answer: 3/‘_;m]/"j(gf‘:)z/a.

An ideal icepick of mass m = 100 g concentrated at its center of mass, which is a
distance f = 25 cm from the point of the icepick‘ is set on its point and an Qﬁemp'{ is

made to balance it. This is impossible, of course, because to balance it, the center of

mass must be both directly over the point (Ax = 0') and at rest (Ap, = O) . If sin 0



Problems 177

™ @, show that the Newtonian equation of rotational motion is
2
d*f g(j
o= =
dt r

with the solution rf = Ya(dx=2p/mvr/g)e V" 415

Ax + Ap/m~r/g)
Vit -

,with Ax and Ap the initial displacement and momentum. For { > \/ r/g, the
negative exponential can be neglected. Use the uncertainty principle to estimate the
maximum time, on the average, during which the center of mass of the icepitk moves
the distance 21 sideways in falling, i.e. the time for the be:;? balance you can expect.
{2 3

m gr
—— ] ™6 sec.

[
Answer: =~ —In‘
V 16g " \ven?

16. A particle of mass m has a wavefunction,

1 mwx? . . . Et
Y :Aexp:~§-h—+tkyy+1k,z— i)

where (@ is an angular frequency. Find the potential energy of this particle Qs a func-

tion of x, and find the total energy for this state.
2 2 2
(ky + kz)h
2m

17. The wavefunction of @a two particle system with masses Mmyj, M, and position vectors

2

Answer: 2 mw X2, E = Y2ho +

ry, rais

2
. myxy -+ maxy mimsge
Y = Aexp |ik -

. X
my -+ mj 4ﬂfoﬁ2(m1 + my)

2 2 2
Vi — x2) + (1 — y2)" + (21 = 22)° ~ ey
where e2/47'r(0 is (I constant. Find the potential energy and the total energy. What is
the physical meaning of this stcrte?

2
—e
Answer: | — ;

471'(0\/()(] - X2)2 + ()’] - y2)2 + (Z] - 22)2

4 2,2
1 mymy e hk

2 my + My (4iﬂ’foﬁ)2 2(m] + m2)
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examples of the
use of Schrodinger’s
equation

In this chapter several examples will be presented to illustrate the use of the
Schrodinger equation and the application of boundary conditions. In the process
of studying these examples, the physical meaning of the wavefunction should
become clearer. For simplicity, all the examples will be done only in one
dimension.

FREE-PARTICLE GAUSSIAN WAVE PACKET

In Chapter 6 we saw that the nonrelativistic timedependent Schrodinger equa-

tion for free particles moving in one dimension is:

2 2
I S

= (7.1)
2 m dx? at

and that a typical solution is a wavefunction of the form
¢ - Aei(prfv)/h (7 2)

where E = E(p) = p2/2m is the nonrelativistic kinetic energy. Physically, this
solution might correspond to a beam of particles uniformly distributed along the
X axis, moving with definite particle velocity, v = ‘p/m, and with definite energy
E-= E(p). The solution In Equation (7.2) is thus both a momentum eigenfunction
and an energy eigenfuriction.

By superposition of such eigenfunctions corresponding to different values of
momentum (and energy), we can build up interesting solutions of the free-particle
Schrodinger equation. For example, as was also discussed in Chapter 6, the

wavefunction

. _ 2 . - 2
b= A exp| P TP | s [iP2x — pat/2m)

- . (7.3)



7.1 free-particle Gaussian wave packet

with p]#p;, is likewise a solution to Equation (7.2), but it is no longer a
momentum or energy eigenfunction.

We now wish to discuss the quantum-mechanical description of a free particle,
which corresponds more closely to our intuitive notion of a particle as being well
localized in space. The solution in Equation (7.2) is certainly not well localized,
because there is no information at all in this wavefunction about the x coordinate
of the particle; all X coordinates are equally probable. A wavefunction describing
a localized particle, with SOMe small uncertainty Axin position, must have a
large uncertainty in momentum according to the uncertainty principle, AxAp, 2
Y2 h. To obtain a localzed wave packet, we will consider a more general super-
position of free-particle momentum eigenfunctions of many different momenta.

This superposition has the form:

. 2
Yix, ) = Z A, exp ’(L__ﬁ'_flﬂ (7.4)
h

where the numbers A, are arny constant coefficients. Since each term in Equation

(7.4) satisfies the Schradinger equation, which is a linear differential equation,
the sum satisfies it.

We can also consider the superposition of wavefunctions with a continuous

distribution of momenta by passing from the summation in Equation (7.4) to an

integration:

Ylx,t) = ] dpA(p) exp | HEX P 1/ZM) (7.5)

|
where A(p) is any function of p.

Now to obtain a function which is localized in space, we shall consider the
superposition in Equation (7.5), with A(p) chosen to give a distribution of
momenta about some central value, pPg. If the momenta (appearing in the integral
in Equation (7.5) are distributed symmetrically about the value p,, we would
expect the particle to move with an average momentum pg, = mMvg. Furthermore,
if there is a large spread in momenta, i.e. if Ap is large, we would expect it
to be possible to have Ax small. We shall choose a distribution of momenta

given by a gaussian, as follows,:

- Yo — 2
Alp) = 1/ " exp| 20 (P = Po) (7.6)

277 h? 5?2

While this is only one of an infinite number of choices, the choice in Equation
(7.6) is particularly interesting for several reasons and is not too difficult to
handle mathematically. The constants in front of the exponential in Equation (7.6)
make the function y'/(x, f) a normalized one, so that the total probability is unity.

Thus, we shall study the wave packet:

. [ ~ %0 (p ~ po)’] i(px ~ p*t/2m)
Yix, 1) = 7 f ex J ex d
x4) 27\ 7Th? " P h? P h P

(7.7)
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72 PACKET AT t = 0

Consider first the resulting description of the particle at time t = 0:

e % a’(p - po)? <iPX>
Xt =0) = ]/ g___ f exp| —2 2P T Po) | oo [PXNgp (7.8
4 ) 2rvant ), TP 5?2 Pl )dr U8

The integral may be performed with the help of Table 7.1, after changing e®/"

to eP0/Mgile-Pol/m and introducing a new integration variable by the substitution

Y =P Po:
Yix,t = 0) = 1 e;x(p(_—)(;)exp <ipox> (7.9)

I/ Vo 20 h

Clearly, at this time the wovefunction is localized in space, near the origin at

x = 0. The probability density is
2
S .
oy f= = (,xp( ; > (7.10)

which is a normalized gaussian distribution centered at x = 0. Thus at f = 0,

<x> = 0. To calculate Ax at this time, we need

Ax = V)~ (7 = f gt [ ¢ 17]

* [ XA o
= dxx? —L— exp |- % = — (7.11)
/:1 \/;0 P\ 0'2 \/2

from Table 7.1. Thus, g is a measure of the distance within which the particle is

initially localized.

TABLE 7.1 Ssome Integrals Involving Complex Exponentials

f exp <_y_2_ + iby) dy = VT aexp [— (;—b> }, Real part of a? > 0
L w a ,

The oscillating factor exp (ipox/ﬁ), which multiplies the gaussian in Equation

(7.9), corresponds to the fact that the particle has an overall momentum pyg,
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because, calculating the expectation value of momentum, we have:

= ooy 1 = 2 +
= » VY _ X } X _
) j—w v i 0x dx = VT lx exp ( 0?,2 ( 7 * Poj dx = po

(7.12)

Thus the wavefunction corresponds to a particle with average velocity, vg =
po/m. The rmms deviation from the mean momentum, or uncertainty in momentum,

IS:

® . 172
Ap = f Y (—TrZZ—‘pz dx — p?
. Y x

= i }2,2 hxpo +2 1/2
- ——exp|——= |- * 2i +pl- — |dx—p2
»[x V7o < 7") * ’ P 7| P

{ g a o

]ﬁz -h2 172 ~h
= —+0+P(2> + ;E_F'g = (7.13)

20° \/Ear

Note that at t = 0 the uncertainty product is the minirnum allowed by the un-

certainty principle,
h o h
V2e V2 2

ApAx = (7.12)

NS

Thus, at first the gaussian wave packet is actually a minimum uncertainty packet;
this is one of the reasons the gcussian packet is of particular interest.

Summarizing our results so fcxr, we have, at f = 0,

<x) =0, Ax = — (7.15)

- (7.16)

1l
T
2
>
e
1
!

)

.3 PACKET FOR t > 0

Next, we shall calculate the expectation values and uncertainties at any later
time t. We would expect that the average momentum and uncertainty in momen-
tum would not change with 1rime, since there are no forces to modify the
momentum distribution. This could be verified by detailed calculation using the 1//
in Equation (7.18) below. To calculate x and Ax, we need the wavefunction
\b(x, f) at an arbitrary time and hence must perform the P integral in Equa-
tion (7.7) at an arbitrary time. This may be done in a straightforward way,

using the integrals in Table 7.1, although the algebra is a little messy. The

integral may be written as:
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. ) o,
Yix, t) = 1/——0 exp i{pox — pot/2m)
27!'\/‘!1'712 f

? it X Pof\
d —(p — 20T j - LA
f pexp (—(p — po) <2T12 to =)t P po ; mﬁ,)

(7.17)

The first integral in Table 7.1 then gives us:

2 . 2
o) exp| & (X TPo/m) i (pox pof)l .18)
\/71' + :ht/m) 2 ¢° + iht/m K 2m

This wave function leads to a probability density of

2 2
o - G K - t/m
=lyli= 2,2 " 4( o /2) | (7:19)
Vavat § ym (c* + hi#*/m?) |
This distribution is centered about the point x = pof/m, corresponding to an

average particle speed of po/m. This agrees with the result (p) of Equation
(7.12). The distribution c:enter, po t/m, is, of course, also the expectation value

of x. The rms deviation of x from its mean is:

1\2\
Ax = <<x - pL) >
m 4
2 1/2
_ f o <x B p_f) —-g°(x — pof/m)1 dx
e VTV + B m? (c* + h?/m?) |

A/ 2 2,2, 2 2

o+ ht/mo (7.20)

V2
This Ax is least at f = 0 and increases thereafter. This is because of the

possible presence of momenta greatly different from pg within the momentum
distribution, resulting in the possibility that the particle may be moving with
velocities greater or less than the average, po/m, and thus the possibility of the
particle being farther and farther from (x) as time progresses. If the particle is
very sharply localized in space initially, that is if ¢ is very small, then from
Equation (7.20) it is seen that the wave packet will spread very rapidly, because
at large times, Ax ~ tit/ma. This is due to the complementary presence of very
high momenta, which must be present in order that Ap be large, Ap > 'ﬁ/QAx,
If the particle is not very well localized initially, (large a), the wave packet
spreads slowly. We could expect that at sufficiently large times, the spread of the
packet would be on the order of AVt = Apf/m = hf/?am. The uncertainty Ax
in Equation (7.20) is of this order of magnitude for large f. The uncertainty
principle is satisfied at all times, since from Equations (7.12) and (7.20)

2,2

L L (7.21)

mZO,Z = 2

AprZ%ﬁ 1+
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Let us put some numbers in, to see how long we can expect a particle to
remain reasonably well localized. Suppose we consider an electron with mass of
about ]0730 kg. If it has a few electron volts kinetic energy, such as it might
pick up in a low voltoge vacuum tube, it is moving with a speed of around ]06
m/sec, Also, if in an experiment the electron is initially localized to within a
distance Ax of 0.01 cm, then the spread in velocites, v = Ap/m = Ti/(24xm),
is on the order of 1 m/sec, very small compared to the speed. Now, from Equa-
tion (7.20) the spread in the distribution will be multiplied by \/2 when
ht/m = g%, since ¢ is of the order of 0.01 cm, this time is of the order of
10* sec. While this rnay not seem a long time, with a speed of 1(° m/sec, the
electron will have gone 10? meters, or about 300 feet, in that time. During this
displacement, the packet will spread only about 40% in width. Thus, for most
macroscopic experiments, we do not have to worry about the electrons’ be-
coming nonlocalized. For a macroscopic object, such as a stone of 100 gm mass,
the time required for Ax to increase by a factor of \/E is around 1025 sec,or
about ]O]a years. This indicates why quantum mechanics is ordinarily unim-
portant for the descriotion of macroscopic bodies. The spreading and motion of
a gavussian wave packet is illustrated in Figure 7.1.

¥hi

Packet at t=0

Packet at >0

_ N

|
0 X=pot/m X

Figure 7.1. Graph of probability density in a Gaussian wave packet. The wave packet
:;preods In space as time progresses.

STEP POTENTIAL; HIGH ENERGY E > V,

The first example involving the matching of boundary conditions will involve the
one dimensional potential energy shown in Figure 7.2. This is called a step
potential, and corresponds to the particle experiencing a very large force over a
very small distance when goirg from region | to region . In region | the potential

energy is zero, and in region Il it is the constant V,,.
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Yo

Figure 7.2. Step potential such that V = 0, x < 0; V = V0 x 0

If the nonrelativistic wavefunction is of the form
Yix, t) = P(x)e 7 (7.22)

then the one dimensional differential equation for the spatial part of the wave-

function ®(x), for a particle of mass m, is:

h? 3?P
R + Vb = EP (7.23)
In region I, since V = 0, the equation is:
h? 9*d
o > = ED, (7.24)
m dx

The equation can be rearranged by multiplying throwugh by 2m/h2:

42 d 2

or, with
kK = +[2mE/R?]'"? (7.26)
,2¢
22k, =0 (7.27)
dx?

In this form, it resembles the harmonic oscillator equcfion of classical mechanics,

X + wzx = 0, and has solutions which are oscillating in space,

$, = Ae™ + Be™ (7.28)
where A and B are constants.
In region I, the differential equation is:
h? 3?P
7”2 + Vo, = EP, (7.29)

2m Jx



7.5 Beam of incident particles

@, 2m(E - Vo)
axt h?

b, =0 (7.30)

Since we are assuming E > v, the solutions are of a form similar to those in

Equation (7.18); putting @ = +[2m(E -~ Vo/ﬁz]m, we have:
b, = Ce'™ +De™™ (7.31)

where C and D are constants.

BEAM OF INCIDENT PARTICLES

The constants A, B, C, and D in Equations (7.28) and (7.31) are determined by the
imposition of physical boundary conditions. As an example, we shall consider
what happens when a bearn of particles of energy E is incident on the step
potential from the left. The incident beam corresponds to a NONZero volue of A
in Equation (7.31); i.e., since the momentum operator is P, = ~l'ﬁ('}/(')x, the term
Ae'h corresponds to a beam of positive x momentum, p, = hk. The term Bei'h
would correspond to a beam of particles in region | traveling to the left, such as
could occur if the step could cause particles to be reflected. In Equation (7.31),
the term Ce’*” corresponds to a beam of particles traveling to the right, due to

ax

particles transmitted through the potential barrier, while De™** corresponds to
particles incident on the barrier from the right. If the experiment is set up so that
a source of particles is far t¢ the left, then we have to allow for a transmitted
beam in region Il; but there is no source for particles incident on the step from
the right. Hence, we must have D = 0 in Equation (7.31). Thus, for this particular

problem,

P, = Ce'* (7.32)

Now let us apply boundary conditions at x = 0 to find B and C in terms of A.
We must satisfy the condition!;:

| = Pl (7.33)
and
JP aP
LA . 4] (7.34)
Ix |x-0 dx |x-o0
With the substitution, x = 0, the first of these conditions gives us:
A+8B=C (7.35)
The second condition leads to:
ikA ikB = jaC (7.36)

If the two equations, Equations (7.35) and (7.36), are used to find B in terms of A,

the result is:
B = ]rd(a/_k_)A (7.37)
14 (a/k)
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Likewise, the solution for C gives us:

2

= ——A (7.38)
1+ (a/k)
Then the wavefunctions are:
1 — (a/k)

([) — A ikx R ST ikx 739
! RN (739)

2
b, = —A—S-eux (7.40)

1+ (a/k)

Thus, incoming particles in region | moving in the positive x direction are par-

tially reflected and partially transmitted into region Il

7.6 TRANSMISSION AND REFLECTION COEFFICIENTS

An interesting relationship is obtained if Equations (7.35) and (7.36) are multi-
plied together and the resulting equation is multiplied by ﬁ/im. Then
hk hk ha
—A? = Bt 4 —

C? (7.41)
m m m

This equation has a very simple physical interpretation. We shall, for convenience,
assume that A is real, ard thus from Equations (7.37) and (7.38), B and C must
also be real. In general, L,{/ 2is prop)rﬁ’ona|t0 the probability density of
particles. Then, in the function <b| = Ae“‘" <+ Be-“*, A’ is proportional to the
number of particles of momentum hk per unit length along the x axis. Let us
assume that A is normalized, so that AZis exactly the number of inceming
particles per unit length. Since hk is the mornentum, fik/m is the particle speed,
and the term, "FnkAZ/m, in Equation 7.40 is the speed times the number of in-
coming particles per unit length. This is equal to the number of incoming particles
arriving at x = 0 per unit time. Likewise, ﬁkiBz/m is the number of particles per
unit time reflected back into region | by the step at x = 0. Similarly, ﬁacﬁ/m is
the number of particles transmitted through the step X = 0 into region Il, per
unit time. Thus, the overall meaning of Equation (7.41) is that the number of
particles reaching x = 0 per unit time equals the total number leaving that point
per unit time; i.e. the total number of particles is conserved.

One can define a reflection coefficient R to be the fraction of incident particles
reflected, or the ratio of the number of particles go‘ing back into region | to the

number of incident particles at x = 0. Thus, from Equation (7_37),

_ (hkB*/m) (1 = a/k)
- (ﬁkAz/m) ("" 1 + Q{/k)2 (7.42)

Likewise, the transmission coefficient | is defined as the fraction of incident

particles which are transmitted, or the ratio of the number of particles going into
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region |l to the number of incident particles:
_ (haC?/m) 4a/k (7.43)
(hkA%/m) (1 + a/k)? '
We see that T 4+ R = 1; this is another form of the conservation of particles

equation. As the energy F becomes very large compared to the potential height
V,, we would expect the po!‘enﬁa| to be less and |e:ss important, so the trans-
mission coefficient should approach unity. Since a/k approaches one in this limit,
Equation (7.43) shows that this is indeed the case. When E= V,, & = 0. Then
the transmission coefficient is zero and all the particles are reflected. If the par-
ticles obeyed Newtonian mechanics rather than quumum mechanics, T would be
equal to unity for all energies E > Vo, and there would be no particles reflected.
Thus, the wave properties ot the particles cause reflections that would not occur

classically.

ENERGY LESS THAN THE STEP HEIGHT

Suppose that F < Vo for the same potential energy function, with a step
height VO. Then, in classical mechanics, no particles could go into region Il where
V = VO, since there the kinetic energy would have to be negative, leading to
imaginary speeds. Hence, Newtonian mechanics would say that all the particles
are reflected. We shall see that quantum mechanics gives the same result. If

E < V,, we stil have for the solution in region |,

$, = Ae™ + Be ™ (7.44)
However, in region Il, since E < v,, the solutions must involve real exponentials,
b, = Ce™+ Dern (7.45)

where = Vr{n;k\;i)i—ifsl’ﬁ.As x—>x,e™ >4+ x Hence, it D#o,
there would be an infinitely large probability of finding particles infinitely far
inside the classically forbidden region. This is not reasonable, so D must be zero.
The remaining solution in region Il is the same as the solution for E > Vo, but
with (¥ replaced by iﬁ, If the boundary conditions are now applied at x = 0,

the equations relating A, B and c are:

A+B=C (7.46)
and
iklA-8) = —fC (7.47)

Then, in terms of A, the solutions for the coefficients are:

1+ (B/ik), 2

e A C = —————A (7.48)

T (Bik) L (B/ik)
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In this case, even if A isreal, B and C are both complex, and so the number

of particles reflected back into region | per sec¢ is

Tk . _ hkB*B
I8 = (7 49)
m m

The reflection coefficient is then:

(kBB /m)

(hkAA* /m)

— | 2
_ D @l = @] (A T 50

S @kl Bk A
All the particles are therefore reflected.

Even though the transn-ission coefficient T is zero, this does not mean that a
rneasurement would never show a particle in region Il. In fact, the number of
particles in region Il per jnit length is 4)” 2- ¢ 2e’m“,The net particle
current to the right is simply zero in that region. In Newtonian mechanics, the
probability of finding a particle in region Il would be zero. Thus, in quantum

mechanics, particles can penetrate into a region which is forbidden classically.

7.8 TUNNELING FOR A SQUARE POTENTIAL BARRIER

One implication of this penetration effect is that if the higher potential region is
not very wide, particles will have a possibility of tunneling through to the other
side, and of being transmitted. Classically, this would be impossible.

To illustrate quantum mechanical tunneling, we will use the potential energy

shown in Figure 7.3, with V = Vo, a constant, between x = 0 and x = a. We
vix}
Il i}
v(;
x
x=0 x=a

Figure 7.3. Square potertial barrier used to illustrate quantum mechanical tunneling.
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assume that elsewhere, V = {J. As was the case in the previous section, the solu-

tion in region | is now:
b = Ae™ + Be ™, k = XT° (7.51)

In region Il, if E < VO, the solution is:
g - V2m(Vy, — E)

b, = Ce ™ + De™; -

(7.52)

Here we cannot conclude that D = 0, since region Il does not extend to
x = + % . If the source of particles is to the left in region |, and there is no
source far to the right, then we may allow for the possibility of particles tunnel-
ing through the barrier and continuing on to the right by taking the wavefunction

in region Il to be
¢, = Fe™ (7.53)

As before, hk A 2/m is the number of particles per unit time moving to the
right in region | and hitting the potential barrier, hk ( [ l 2/m is the number
reflected, and hk F ‘ 2/m is the number transmitted into region Ill. In this
example, the particles in both regions | and Il have momentum of magnitude Ak.

There are two boundary conditions at x = 0: continuity of the wavefunction

and of its derivative; and there are two similar conditions at x = a. They give

A+B=C+ D
at x =0 (7.54)
ik(A-8) = B(-C+D)

Ce ™™ + De™ = F'
at x = a 7.55
B(—Ce ™+ De”") =ikFe™ (7o

Solution of Equations (7.54) and (7,55), for B,C, D and F, in terms of A, gives us

after some algebra,

[1+ (B/k)°1(1 = e )

B = - A,

=BT 0= ™)+ @m0+ e
2(1 + i(B/k)]

C = .

(1= (B/k)*1(1~ e + 2i(B/k)(1 + e ) ATED
. -2pa
D = 201 - i(B/k)]e A(7.58)

1Bk e+ 2i(B/k)(1 + e )
4i(B/k)e 1Mo o
(1 = (B/k)1(1 = e™) + 2i(B/k)(1+ )

(7.59)

While these results are somewhat involved, it is easy to substitute them into

Equations (7.54) and (7.55) and to verify that they are solutions. Since the
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particle speed is the sarne in | and Ill, the transmission coefficient is simply
T=FF*/AA*. 1t is
16(B/k)? e ~20° (7.60)
[ = (B0 = 7% + 4B/ + e )

If ﬁa is large compared to one, the exponentiais in the denominator of Equation

(7.60) are very small compared to one, and can be dropped. In this case,

a8/k |
T~ LZ e e (7.61)
1+ (B/k)
Because the exponential, e '2’10, rapidly becomes small with increasing 60, the

traction of particles getting through is very small when (a = \/2m(V0 - E)a/h
is large. Thus, as the energy becomes smaller compared to V0, or the width of the
potential barrier becomes greater, fewer particles tunnel through. Of course, in

Newtonion mechanics no particles would get through.

example ‘I. When two materials are placed in contact, an electron often has to go
through a potential barrier of a few electron volts to get from one material to
the other. There are a number of solid state devices which are made this way
deliberately. For elecfrong, m = 91 X '|0-31 kg and h = 105 X '|O’3‘1 i-sec_
Take Vy — E = 1 eV and a = 3 Angstoms, a reasonable distance between

atom layers. Estimate the value of the exponenﬁal e ~a

2V2my, - B)a
h

solution Qﬂa =

C2V2(91x 10T (1.6x 10773 x 1079
1.05 x 1073 S

-2 —3. . .
Po - e 38 _ 0.046. So the tunneling is reasonably probable.

Therefore, e

example 2. Hydrogen impurities in a solid might diffuse through it by tunneling of the
hydrogen nucleus (the proton) from one lattice site to another. The proton mass
is about 1836 times that of the electron. Take the other parameters to be the

same as in part (1) of this Example. Find the exponential in this case.

solution Since the only change from Example 1 is in the mass, the exponent is increased
by a factor of \/'Iﬁ(; Then eﬂﬂa = e‘]32 =2 x 107%. The proton in oscil-
lating about its equilibrium point in the solid might hqve a frequency of around
]013 per second. This is essentially how many times the proton hits the barrier
per second. The product of ]0]3 and the exponential is a measure of the order
of magnitude of the probability of a proton jump per second. This is of the
order of ]OA“, complete y negligible. If the quantity, Y, E, were lowered

by a factor of ten or more. this diffusion would begin to be more important.

7.9 PARTICLE IN A BOX

As a fourth illustration of the solutions of the gne dimensional Schradinger

equation, we shall consider the case of a particle confined to a finite region, a
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one dimensional box of length L. By this we mean that the particle is definitely

inside the box and is kept there by rigid impenetrable walls at the ends, x = 0

and x = L. This is illustrated in Figure 7.4. Since the particle is confined to a
To infinity To infinity

i
v

[} Xz==L

Figure 7.4. Potential energy function for a particle in a one dimensional box.

region of size L, the uncerfc|infy in position Ax is about L, so the uncertainty
Ap, in momentum p, should be about h/L, Hence the particle cannot have a
definite momentum. It can, however, stll have a definite energy, as we shall see.
A[E'/ﬁ, where $(x)
is the spatial part of the wove function. Hence, inside the box, where V = 0,

We still assume that the energy is definite, so ¢ = P(x)e

$ satisfies the differential  equation:

h? d*d
2m dx?

- ED (7.62)

We expect this equation to tell us what ‘I)(x) I1s inside the box. The situation is
somewhat analogous to the case ol a stretched string held rigidly at both ends. In
that case also, a wave may exist on the string, and solutions of definite fre-
quencies arise only when an integral number of half wavelengths of the wave can
fit into the length L of a string. Thrs gives rise to standing waves on the string.
A similar situation should hold for the de Broglie wdvVves in the box of length L.
If Xis the wavelength of a de Broglie wave, then in order for the wave not to
interfere destructively with itself, an integral number n of half wavelengths

should fit into the box, or:

2o (7.63)

p = o (7.64)
A2t
The kinetic energy would be
p’  (hn)’

(7.65)
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So only a discrete set of energies or frequencies would be allowed. These would

be determined by values of the integer n.

BOUNDARY CONDITION WHEN POTENTIAL GOES TO INFINITY

Now let us see how this same situation would be treated using the Schradinger
equation, Equation (7.62). To solve a differential equation like this, we need to
have boundary conditions, statements analogous to the requirement that the dis-
placement at the ends of the stretched string must vanish. In our case, we know
the particle is inside ra"her than outside the box. The reason that (I) is zero
outside the box is that the walls are assumed to be perfectly rigid, so that all
particles bounce elastically off the walls, or, equivalently, that the potential
energy is infinite outside. The probability of finding a particle outside is there-
fore zero; so, for x outside the box, (I)(x) ’ [ 0. This implies that the value
of @ itself must be zero outside. Since the wavefunction must be continuous, the

value of the wavefunction just inside the box must be zero at either end, so
P(x =0 = P(x =) =0 (7.66)

The slope of the wavefunction must also be continuous, and it might appear at
first glance that both the wavefunction and its slope are zero at the endpoints;
but this would mean the wavefunction would vanirh everywhere, an unreason-
able solution. To see why the slope of the wavefunction can be finite at the end-
points, suppose the potential energy outside the box were not infinite, bur had
a large constant value. Then for x > L, (I) = Ceiﬁx, with ﬂ proportional to the
square root of the potential energy. Outside, d®/dx = —BCe " = -3,
Hence, although ¢ approaches zero as Vo =* x, ,8 approaches infinity and the
product BCI) can remain finite. Indeed, d‘b/‘dx must be finite everywhere, both
inside and just outside the box. The boundary conditions for the case of the
particle in a box are therefore given by Equation (7‘66), with no further avail-
able information on the slopes dq)/dx at the endpoints, except that they are

finite.

STANDING WAVES AND DISCRETE ENERGIES

We now have a differential equation, Equation (7.60), with boundary conditions.

For ease in writing the equations, let

2 1/2
k=t mAE) - (7.67)
Then the Schrodinger equation, Equation (7.32), becomes:
2
Z(f = —k*® (7.68)
X

This equation is the same as that discussed in connection with the step potential,

and has oscillatory solutions of the form of Equation (7.28). For the present
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OppHicaﬁon, however, it is more convenient to write the solutions in trigonometri-

cal form, as a sum of a sine and a cosine:
$(x) = A cos kx + Bsin kx (7.69)

where A and B are two arbitrary constants whose ratio is to be determined

from the boundary conditions. One condition is ®(x = () = 0. This gives us:
$(0) = A cos (0) + B sin (0) = 0 (7.70)
or A = 0. The second boundary condition is ®(x = L) = 0. This gives us:
P(L) = B sin (kL) = 0 (7.71)

This could be satisfied by setting B = 0, but then the whole wavefunction would
vanish, which is not the desired solution. The other possibility is sin (kl) = 0.

‘The sine function has zeros at values of L such that:
kL = n7 (7.72)

where n is any integer not equal to zero. If n = 0, again the whole wave-
function would vanish, so this case is excluded. The possible wavefunctions are
then:

¢Jx)=3ﬁn(%?> n=1,23... (7.73)

Only positive integers are taken, because negative integers just duplicate the
same wavefunctions with an overall sign change; the overall sign, however, is
not physically significant. The constant B can be determined by normalization.
Thus, if the probability of ﬁnc“ng the particle in the range dx is &, de,

then for one particle in the box,

p—

~ L
/ dx | &,(x)|? = (7.73)
Ja

)

Using the formula

(7.74)

S—
Q.
x
&
e
3
TR
~ (3
~1x
N
Il
N j—
—

we find that
2
IB|? == (7.75)
L
If, for convenience, B is taken o be real, the final form of the eigenfunctions is:
/2 . [n7x
d,(x) = V 1 sin , n

nmx =1,2,3,... (7.76)
L
The constant in front of the sine function is called the normalization constant.

Having solved the differential equotion with boundary conditions, we can now
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find the allowed energies. From the definiton of k, Equation (7.66), the energy is:

212
E -% (7.77)
m
or
ﬁ 2
E = (;”LLZ (7.78)
m

This is the some qs that obtained by analogy with a stretched string. The main
point to be seen here is that because of the boundary conditions, only a discrete
set of energies Qre possible; the energy is quanﬁze-d. The smaller the size of the
box L, the larger will be the spacings between allowed energies. Physically, it is
the confinement of the electron to lie within a small region which gives rise to
the discrete energy spacings. In classical mechanics, any energy would be pos-

sible for this mechanical situation.

MOMENTUM AND UNCERTAINTY FOR A PARTICLE IN A BOX

To investigate the momentum, the sine function can be written as a super-
position of exponentials. For example, for n = 1, the ground state, the wave-

function is:

[ iTx it
b (x) = = [—=]|@E™" - e ™" (7.79)
V210
The term involving e'”/l by itself would correspond to a value of momentum
given by:
hdd Lk
Px‘b = - "= or p,= — (7.80)
i dx L
The term e ™" would correspond to a value of momentum, p, = —ﬁrr/L, So

appearance of these exponentials in @1 with equal amplitudes corresponds to the
motion of the particle in either direction with equal probability; the wavefunction
(I)W is a superposition of waves of equal but opposite momenta. Thus the expec-

tation value of the momentum is zero. This could be verified directly by calculat-
L
ing fdx Y*(h/i)dy/dx. The difference in the momenta of the superposed
0

waves should give us @ measure of the order of magnitude of the uncertainty

in P.. Thus, approximately,

Ap, @ﬁ_"' _ [_hm\ _ 2hm (7.81)
L L L

Also, Ax is on the order of L, so AxAp, 2 h, in agreement with the uncer-
tainty principle. A more careful calculation of the uncertainties using rms devia-
tions from the means could easily be made, but the crude argument given above

is sufficient to illustrate the wuncertainty principle in this example.
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Frequently, physicists represent energy levels by a diagram in which horizontal
bars have a vertical spacing proportional to the energy spacing between levels.
This allows one to see at (1 glance the energy structure of the system. In

Figure 7.5 an energy level diagram is shown for the particle in ¢ box, where the

£

o

Figure 7.5. Energy level diagram and possible transitions for ¢ particle in o one
dimensional box.

energies are E,, = n2h2/8m1_2_ Here the distance of the bars from the base line
corresponding to the zero of energy is proportional to nz. This is essentially a one
dimensional plot of allowed energies with energy increasing upwards. The par-
ticle can exist in stationary states, states of definite frequency, only if the energies
have these discrete values. If some external influence should disturb the particle,
then it might change from one of these states to another. For example, if the
particle started in the state labeled by the integer n,, and ended up in the state

ng (U for upper, X, for lower), then it would have to lose energy:

E, ~ Ep = (n, — ng){—;

2 o f RN (7.82)
8m»L2)

This energy could be given up in the form of a photon The energy of the photon

would be:

E = hy = E, Es (7.83)

Therefore, the differences between levels in an energy level diagram are propor-
tional to the light frequencies we rnight expect to see emitted from the system.
Physical systems for which the particle in the box is a good model are found

in certain classes of long straight molecules of varying lengths L, which attract
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electrons in such a way thot the electron moves back and forth between the ends
of the molecule in a standing wave. The observed energies are closely approxi-
mated by those of the particle in a box, Equation (7.78). When the electron
makes transitions between these energy states, absorption and emission of
photons are observed. If the upper state is the n = 2 state, and the lower
state is the n = 1 state, then for a molecule of length [ the frequency of the
photon should be:

3h
= > (7.84)
8ml
The wavelength of the photon would be given by:
2
A=< 8mlL°c (7.85)
v 3h
For the electron, m = 9. 11x 1073 kg. Then, for @ molecule of length L = 7
Angstroms, this wavelength is in the visible region:
AL 1073)(7 x 107%*(3 x 10%)
(3(6.63 x 107%)]
=539 x 1077 m = 5390 Angstroms (7.86)

7.14 HARMONIC OSCILLATOR

The final example to be studied in this chapter is the one dimensional harmonic
oscillator. The study of the quantum mechanical lharmonic oscillator is very
important, because a number of physical systems can be considered to behave
like a collection of harmonic oscillators. For small vibrations, particles in most
potential wells have simple harmonic vibrations. For instance, a diatomic mole-
cule has the energy levels of a one dimensional harmonic oscillator (along with
rotational and atomic levels). Also, quanﬁzed sound waves (phonons) and light
waves (photons) can be represented as harmonic oscillators.

The Schrodinger equation for a one dimensional harmonic oscillator must first
be obtained. For a particle of mass m with displacement x from equilibrium,
the kinetic energy operator is —(ﬁ2/2m)62/6x2. The total energy operator
is iha/(”. Also, for o spring constant K, the harmonic oscillator potential is
v = Y% Kx? These operators lead to the Schr('jdinger equation:

2 92 )
L L R A (7.87)
2 m dx? at

If, again, a stationary state with definite energy is assumed, so that \0 =
(P(X)e"a/ﬁ, the equation for P is:

Kt d?¢ 1,
_n o= ~Kx'd- E® .
2m A t 5 Kx (7.88)
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Since in microscopic systems, frequency is more easily measurable than spring
constants, it is desirable to eliminate K by expressing it in terms of the angular
frequency for a harmonic oscillator from Newtonian mechanics, w = VK/m =
27v. Then, in terms of w,

2 2
SRS ENE =
m X

Let us verify that for the proper choice of @, an energy eigenfunction is:
b, = age 2’ (7.90)

where ag is a normalization constant. The first term in the differential equation,
Equation (7.89), contains:

2 ~1/2ax? ;
ey =al <d_e >= aoe @t @) (7.91)
x

The differential equation then becomes:

2 2 2
2 ¢ h o 1 Z 2 y
aoel/Q ax _h a XZ + + —mu);X‘: 0097‘/2(“ E (792)
2m 2m 2

Since this must hold for any arbitrary x, in order to have a solution the sum of
the coefficients of x? must be zero. Thus, —h’a?/2m + %mw? = 0, and this
leads to a value for «,

L (7.93)

Then for the remainder of the equation to be satisfied, the energy eigenvalue

must be:
E=E = % wh (7.94)
Note that the probability density &, | 2 for this solution to the Schrédinger
equation is gaussian in form. One might suspect that for this case the uncer-
tainty product Ap Ax would be a minimum. Comparison of the wavefunction of
Equation (7.90) with the free-particle gaussian packet, Equation (7.9), indicates
that Yo a = %2 a2, so for this case,

=0 (7.95)
1 1 1
Ax=—=1>= — (7.94)
" V72 ®  \2a
ey =0 (7.97)
Ap = %\/E % 1/? (7.98)

Hence, again, AxAp = h/2. In fact, it is because of the uncertainty principle
that the minimum possible energy of the oscillator is greater than zero. Clas-
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sically, the minimum energy state of an oscillator would occur when the mass
was at rest (p = 0) at the position of zero displacement (x = 0). Then both
kinetic and potential energies would vanish, and Emin = 0. This is not possible
in quantum mechanics, because then both position and momentum would be
known, with Ax = Ap = 0 violating the prin(:iple of uncertainty.

Since <x>= (p) = O for the oscillator, Apz:z(p‘) and Ax?= <x2>.

The average value for the energy in the ground state is thus:

1 1 1 1
E = — ’ + - K 4 ::—‘_\ 2+ — 2
<> om (p’) 2 (x") 2m P 2K._\.x
1 ke 1 K )
= — — 4" - 7.99
2m 2 2 2a ( )

1 h'mw 1 *h 1 1 1
Ey = L hme 1 Bl Y he = Y he (7
€ 2m  2h 2K Tme T gt P = ghe (7100)

Thus, in Q sense, the uncertainty principle requires both <p2> and (x’) to be

positive, and forces the ground state energy to have a positive value.

GENERAL WAVEFUNCTION AND ENERGY FOR THE
HARMONIC  OSCILLATOR

The general solution of the one dimensional harmonic oscillator Schrodinger
equation which satisfies the boundary condition, ¢ . 0 Qs x » + x, i, for

« = mw/h,

1/2n

: - 2
P, (x) = Z ag x* g2 ax , for n an even integer (7.101)
£=2

172 (n- 1)
- IIXZ
P,(x) = x z GLXMG 2 for n an odd integer (7.102)
=0

By substituting into the Schrodinger equation, Equation (7.63), one may find
the coefficients a{ in terms of a,,, and determine the energy eigenvalues. The

general expression for the energy is found to be:
1 .
E, = <n + 2 hw, n=o0 12,3, .. (7.103)

The first five of the eigenfuncﬁons are given in Table 7.2, along with their energy
eigenvolues. The lowest (energy, ‘/zﬁw, belongs to the state described by the
wavefunction (IDO already discussed. This is ‘called the zero point energy. The
five lowest possible energy eigenfunctions of Table 7.2 are graphed in Figures 7.6
through 7.10, along with their probability densities, ) 2

n
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Figure 7.6. Wovefunction and probability density for the ground state (n = 0) of the
harmonic oscillator. The horizontall bar beneath the origin indicates the range of possible
positions for classical motion with the sGme energy.
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Figure 7.7. Wavefunction and probability density for the harmonic oscillator state
with n = 1.
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Figure 7.8. Wavefunctian and |3robobi|i1y density for the harmonic oscillator state
with n = 2.
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Figure 7.9. Wavefunction ¢nd probability density for the harmonic oscillator state
with n = 3.
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Figure 7.10. Wavefunction and probability density for the harmonic oscillator state
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with n = 4.
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TABLE 7.2 Eigenvalues and Eigenfunctions for First Five Simple Harmonic
Oscillator  States

E
Quantum Wavefunction . nergy
Number $ Eigenvalue
n " E,
1/4 )
0 (1 e—l/ﬁax2 1 ﬁw
T 2
3%\1/4
1 <4__a ) x e 1/2ax? g hew
L.d 2
o 2, —1/2ax? 5
—_— (1 — 2 - h
2 <47r ax)e 5 e
\N1/4 2
9a° x 2 7
- 1 — 2 ol -1/2 ax 4 h
\1/4 4
4 9a — d4ax? + 4a? X e*'/“‘“) ?'ﬁw
641r 3 2

The coefficient 0g, in the case of each eigenfunction (I>,,, may be found by
requiring that the total probability of finding a particle be unity. Thus, for (I)o,
the probability density is, from Equation (7.90),

2
By Dy = g |t e ™ (7.104)

and the total probability is:

* —ax? == ‘001
1= f lao |2 e ™ %dx = v 21 (7.105)
s VvV
from Table 7.1. Therefore, assuming it is real and positive, the value of ag for

this state is (a/Tr)”", as shown in Table 7.2. A similar integration must be done to
determine ag for each state.

COMPARISON OF QUANTUM AND NEWTONIAN MECHANICS
FOR THE HARMONIC OSCILLATOR

It is of interest to compare the probability distribution from quantum mechanics
to that from Newtonian mechanics for @ state of high n. If in Newtonian mechan-
ics the position of the particle is measured at arbitrary times, one would expect
that the probability of finding it in dx is inversely proportional to the speed,. i.e.
proportional to the time dt = dx/(dx/dt) that the particle spends in the range of
positions dx. In Problem 21 of Chapter 2 it was found; that the probability is then:

pdx = ——d: (7.106)

7r\/x§ - x?

for an amplitude Xg.The classical amplitude Xg for (1 given energy is found by
equating the maximum potenticl energy to the total energy:
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2 2E

| 2.2
E=-mw'xy or x5 = -
2 mw

The probability density, 1/(7 \/x(; — x?),is plotted in Figure 7.1 1 as the dctted

curve for E = “2 ﬁw, corresponding to n = 20. The quantum density, (I'*'fb,

Figure 7.1 1. Comparison of classical (dotted) and quantum mechanical (solid) distribu-
tion functions for the one dimensional harmonic oscillator with n = 20.

is the corresponding solid curve for n = 20. Between —Xg and X the main dif-
ferences are the oscillations and zeros in the quantum curve. Outside this range
of X, the Newtonian probabilify density is exactly zero; the particle cannot go
into a region in which the kinetic energy would be negative. There is a tail to the
quantum curve in those regions, however, indicating a possibility for the particle
to be found there.

In Figure 7.12 are given probubility density plots for a harmonic oscillator
with n = 10, together with the 1:orresponding classical density. These plots corre-
spond to a particle which is free to move in the vertical direction but is bound by
the oscillator potential in the horizontal direction. If several thousand measure-
ments of position of the oscillator were made and plotted on a graph, the re-
sulting plot would have the appearance of the Figure.

The connection with Newtonian mechanics may be seen more easily by con-
sidering a gaussian wave packet similar to that discussed for the free particle ot
the beginning of this chapter. The reader may verify by substituting into Equo-
tion (7.87) that the Schrodinger equation is satisfied by:

I/4

= « ex -
Yix, 1) = <? p

1
) afx  xg cos wt)’

Zi\2 wf + axxg sin @l — y cx? sin 2wt (7.107)
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Figure 7.12. Density of points is proportional to the probability density for the harmonic
oscillator with n = 1; quantum mechanical density at the top of the diagram, classical
density below.

This function is a superposition of many stationary states (I)n exp(—iE"i/h), and

thus does not correspond to a definite energy. The probability density is:

|y |? = ‘/% exp[—a(x xo cos wh?] (7.108)

This is a wave packet of constant characteristic width |/da = \/Fp/m—w, with its
center moving with the Newtonian simple harmonic motion, x = Xy cos wt. For a
macroscopic mass of 1 kg and a spring frequency of 1 cycle/sec, the charac-
teristic width of the gaussian is around 107" m. Therefore, for all practical
purposes, the position is known with negligible error.

What about the energy spread? The expectation value of the energy operator,
ihé/()f, is easily found with the help of Table 7.1 to be:

B = - mw'xi + ‘l‘ﬁw (7.109)

This is the Newtonian energy plus one-half the zero point energy. Since the zero
point energy for a frequency of 1 cycle/sec is approximately ]0_34 ], one can
forget about it for macroscopic bodies. The rms deviation of the energy from its

mean is:

2 172 _ T
>> - ()| = V2 1/‘ mw’x; %hw (7.110)
r4

This is \/ 2 times the square root of the Newtonian energy times the zero \point

AE = (m 9
dt

energy. For a macroscopic body, AE is negligible compared to E; it is about
1077 jif £is approximately a joule. On the other hand, AE is very large com-
pared to the zero point energy. So we conclude that for macroscopic bodies, as

closely as we can measure, quantum and Newtonian mechanics agree for the
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harmonic oscillator. Of course, for microscopic bodies this is not true. In parficu-
lar, as the maximum classical displacement x, approaches zero, the wavefunc-
tion, Equation (7.44), approaches the ground state wavefunction and E ap-
proaches the zero point energy. Also, AE approaches zero as one would expect

for the stationary ground state.

17 CORRESPONDENCE PRINCIPLE IN QUANTUM THEORY

The above discussions of the classical and quantum descriptions of a simple
harmonic oscillator and of a goussian wave packet far a free particle provide
illustrations of the application 10 quantum theory of the correspondence princi-
ple, which was discussed in (Chapter 3, in connection with special relativity.
According to this principle, the quantum theory should give essentially the same
results as the classical \‘heory———Newfonian mechanics--in situations where the
classical theory is known to h()ld, such as in situations involving bodies of macro-
scopic mass and size. It was seen, for example, that a wave packet describing a
particle of macroscopic mass had negligible spreading, and, similarly, that a
well-localized oscillator having negligible spread could be obtained for an oscil-
lator of macroscopic mass.

These situations almost always involve the superposition of an extremely |a|"ge
number of stationary states, leading to large quantum numbers. Hence, anotner
way of stating the correspondence principle is that the classical theory must be
an appropriate limit of the quantum theory involving extremely large quantum
numbers. For example, in order for a particle of mass 1 g, in a one dimensiomﬂ
box of length 1 cm, to have a kinetic energy of 1 erg (1 0’ ioules), the quantum
number N must be determined through Equation (7.38), and so:

(8)(10*)(107%)*(1077)
(6.63 x 107%)?

)

(7.1 11)

t1 ~10% (7.1 12)

As another example, the classical ‘oscillator has an energy of order mw2xg; for
this to be described by a packet or superposition of quantum oscillators, which

have energy of order nhw, we must have:

nfiw ™~ mwx? (7.1 13)
o fom =1 g, w =1 Secfl, Xy = 1 cm,
2 10-3)(1)(10-2)?
) o e _ )(0324 o7 .y
1

So in these examples n is indead large.
One can actually show rigorously that if the oscillator wave packet, Equation
(:7.]07), is expressed in terms of a superposition of oscillator wavefunctions,
—iE,t

Yix, 1) = ZA,,(I?,,(x) exp — (7.1 15)
n=0 J
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then to describe @ macroscopic particle, the majority of quantum numbers n
which contribute to the above sum are given Clpproximafe|y by Equation (7.1 13)
above, and are hence very large.

Numerous additional examples of this correspondence between quantum and
classical theories in the [imit of large quantum numbers will be discussed in later
chapters, in connection with statistical mechanics, lattice vibrations in solids, and

the hydrogen atom.

sumimaryv

FREE PARTICLE

A free-particle wavefunction with properﬁes similar to those of a Newtonian
particle may be formed with an initial gcus.sion distribution. Subsequently, the
wavefunction is also gaussian, with the characteristic spatial width increusing
with time due to the uncertainty in the momentum. For macroscopic cqses,

Newtonian and quantum mechanics agree.

STEP POTENTIAL

If E > VvV, the wavefunctions are simple oscillating exponentials in the two
regions separated by the step. By using the conditions that the wavefunction and

its derivative are continuous at the step, one may find the amplitudes of the

reflected and transmitted waves. The particle current is proportional to the
magnitude of the amplitude squared times the speecl' The ratio of the transmitted
current or reflected current to the incoming current is the transmission or reflection
coeffkient, respectively. The sum of these coefficients is unity, expressing conser-
vation of number of particles. For energies below the top of the step, E < V,, the

reflection coefficient is unity.

SQUARE POTENTIAL BARRIER

For a square potential barrier of height V,, some of the incident particles may
tunnel through to the other side even if E < V,, The fraction tunneling through is

of order e’mc’, where a |5 the barrier width and ﬁ = V/Q_m(vo — E)/ﬁ

PARTICLE IN A BOX

A particle confined in o finite region can have only discrete energies. This is

illustrated by the discrete energy eigenvalues of the particle in the one dimen-



Problems

sional box. At the boundaries of the box, where the potential energy suddenly
goes to infinity, the wavefunction must be zero. These boundary conditions lead
to standing waves with the discrete energies, E, = hznz/8mL2, with n a non-

n

negative integer for a box of length L. The lowest energy is greater than zero.

HARMONIC OSCILLATOR

Mcmy physical systems approximate the harmonic oscillator potential for small
vibrations, i.e. for low energies. This is another system in which there are only
discrete energies. In this case, the levels are evenly spaced; En = (n + Y2 )Eyu;,
where ( is the angular frequency which the hqrmonic oscillator would have in
Newtonian mechanics. Again in this case, a solution may be found which j¢ of
goussicn shape and moves like a Newtonian particle. Here, the uncertainty in
the momentum does not increase the gaussian width because the particle |§
bound. For macroscopic systems, Newtonian and quantum mechanics are

equivalent.

problems

1. Consider a particle of mass W\Oinkg inside a one dimensional box of length 3 cm.
Suppose it is in a state such that is speed is about 1 cm,’sec, to within 0.1%. What js
the corresponding quantum number n, and the corresponding uncertainty in the
quantum number?

Answer: 9 X ]023; 9 x1 02C_So quantization of E iSunimportant.

2. A simple harmonic oscillator consists of a particle of MQ%S m with a potential energy
of ¥2 kxz,where Kk is a constant. Estimate the minimum energy which the particle may
have consistent with the uncertainty principle, i.e. by assuming _\px =\ p2>"~
T)/QAX and minimizing the energy. (Use the exact form Aprx > ﬁ/?)\f
\/En ~ 1015 per $eC, what is the magnitude of the energy in eV?

1 /?7
Answer: Epn~-f}/-—;0.3 eV.
2 m

3, Write the one dimensional Schrédinger equation for a mass M with a potential energy
corresponding to that of (a) the gravitational field near the earth’s surface; (b) the
interaction of an electron with a fixed point positive charge, qg-

4. Let ¢ be the angle relative to the x axis of the position of a particle in the xy p|(m|3,

Thus, in terms of x and y, ¢ = tan™! (y/x). Show that ¢ = e"*

satisfier, the two
dimensional Schréjdinger equation, with V = 0 for g particle constrained to [TQve
. . 2 2 . . P
in a circular path where x" + y :R2|s a constant. 'ﬁ2/2m(dz¢r/dx',_l_
02 2
d l///ay + E¢=O, What is the energy, E,in terms of the constants, pand R?
If the wave function can h(;ye only one value for a given ¢, find the possible values
that n can have.

2 2

n

Answer: ——R—z;n =0 11 +2,..
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10.

11.

12.

The rigorous definition of Ax is the root mean square deviation from the average

of x, or:

ST T TN S e s N
Ax = V{x =G0y = VIErx = ¢ xdx) Ydx
similarly for Ap. Find Ax, Ap, and Ax.)p,( for the lowest-energy level of o PCIT“C‘E
of mass m in a one dimensional box of width4, .

e ‘
— R |
Answer: — (I 6),7'( , = 0.567h>~h,the minimum
P 12 A 12 2

possible.

Using the exact time-dependent gOUSSiCIn wave packet for a localized free particle
given in Equation (7.18), calculate (p,) and Ap“ and verify that these ex-
pectation values do not change in time.

A one dimensional potential is V = Vg > 0 for X < 0 and X > L and is V = o
foo 0 < x < L. show that if Y, > E > 0, the energy E must satisfy fcn(kL) =

28k/(k2 BHwhere k = V2mE/iand B= V' 2m(Vy —E)/h.

For the wave function of Equation (7.9),AX.Xp= ]/?Zhwhen t = 0. Also for t =0,

show that (E) =(p2./2m)+%ﬁ2/m02,1he Newtonian energy, plus a quantum

term associated with the wave packet due to the momentum distribution. Find AE

Z T7EN2
where AE:\/ (E —<E>) >.In addition to the integrals given in Table 7.1, use
£

2 )
xte ™ dx = Y v 71'/(1/5. These results are independent of time.

pah? 1 At

Answer: -
2miq? 8 m2g?

I f ¢]and \‘[/2 are the normq“zedwavefunctions for the two lowest-energy wave-
functions for a particle in a one dimensional box, normo!ize¢‘+ 2\1/7 and find
the expectation value of the energy.

Oh2r?
2/ 5m L?

For the wavefunction of Problem 9, find the expe(:TaﬁonvaIue of the momentum

Answer:

as a function of time.
325 [3hx’t
Answer: — T sl ——
15L 2ml
show that the function 1// = A sin (k,x) sin (kyy) sin (klz) satisfies the three dimen-
sional Schrédinger equation,
2 f42 2 .2
he oY Yy Y
T T Tt T +Ey =0
2m \dx dy dz
If this is the wavefunction in a box of dimensions o,b,c,in the x,y,Zdirections,

find the possible values for k,, k,, k,, and find the possible energies E.

2 2 /2 2 2
n,m™ n T n, T hg*(n n n
Answer: @ —— X— f_ —; —% + =5 forn,,n,n, = 1,2,3,...
a b ¢ 2m \ao b c”,
If the potential energy is V = VO > 0 for 0 < X < a and V = 0 elsewhere,

find the transmission n:oe{-’ﬁcient for E >V0. Show thot this approaches one for

large E. What would this transmission coefficient be for Newtonian mechanics?



13.

14.

15.

16.

17.

Problems

_ 8(av/k)? |
Answer: > 7 5 72 ,  where
« w «
T+ 6l-] +1{- - T =21-1 +1{- cos (2ca)
k k
2mE V' 2m(E - Vo)
k = ond ¢ = ————~— ———~
h h
For particles inside @ spherical container of radius r, V = 0 for
2. 7.7
I = x2+ y +2z < R, the wave function is zero at f= R. For a particle wof

mass m, show that there ore solutions of the three dimensional wave equation of
h —iEt/l A
the form: ¢: asin (kr)/kr € 'E/ﬁ. What are the possible values of k and E?
2
nT oo (nwh)

Answer: k = —,E = -, n = 1,2,3,.
R 2mR
For the particle in the SphEriCCl' box of Problem 13, show that there are solutions of
the form:
sin(kr) cos (kr) it
Y=al-—5 -~ ——le cos ff
{kr) kr

where 0 is the angle relative to the Z axis, cos 02 Z/f. Write the transcendental
equation, the solutions of which would give the possible values of k. How ore k and E
related? What is the probability of finding the particle at Z = O?

Answer:  tan(kR) = kR; E = h*k?/2m; zero.

In three dimensions, the potential energy (@ particle sees s V = 0 for
e
r=VxE syl e 27 <R ad v = Vg > 0 for ¢ > R The soution Y =
asin (kr)/kr e 7'“{2 given for r< R. Forf 2 R and E< 0, show that @ solution is
~B —
€ ~iEt/h . /
‘¢’=b*e ", where /j:\/?m(Vo *E)/ﬁ.This ¢satisf|es the boundcn'y
r

condition, \[/"0 asf * L. From the boundary conditions at r = R, find a
relationship between ﬁ and k. This leads to the possible values of E,
Answer:  tan(kR) = —k/{.
Two particles of masses myand Mo, constrained to move on the X axis, are €0On-
nected by @ spring, so that V = % K(xg = x; )2, Thus, the Schr&idinger equation he-
comes:

B2 % 1 1
' —2k(X2 - x))'®

2 .
2 \m, dx3 mo dxg,

Ed

Now let X = X; =X, the relative ‘coordinate, and X =(m]x]+ maxg)/(my + m2)1
the center of mass coordinate. Use #/0xy = dx/0x (d/dx)+ 0X/dx1(3/0X)a n d a
similar expression for (9/(3X2to obtain g differential equation in terms of x and X.
Show that there is a solution of the form (I): q)n(x)eiikxwith ‘bn,lhe one
dimensional harmonic oscillator solutions.Verifythat E=F, + k2ﬁ2/2(m1 + m;z)
with the reduced mOSs, given by = mymy/(m; + my), and with E , the harmonic
oscillator energy, given by En = (n + V2)h \V /(/,u.WhCIf is the physical signiﬁccn(ze
of the two parts of ¢ and E?

Assume that the general solution of the one-dimensional harmonic oscillator equoﬁon
is of the form ¢ = f(X)e—I/2 ule with a = mw/ﬁ Show that (ﬁz/’Zm)dzf/dxz._
‘hwxdf/dx+ (E ]/Zﬁw)f = 0. Assume that f = :Z,cxzoa{xZ{.Substitute into
the differential equation and ﬁnd ¢ relationship between 04 and Cl{+] by setting

the coefficient of each power of X to zero. Show that ay = 0 for 4 > n/2 if
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E —='>ho = nhw with n an even integer. Thus, f is a polynomial with a finite

number of terdimilar results

an odd integer.

occur

o <>.£470 atxz)(,w

aud =

for: Then n is

18. By comparison with the one dimensional simple harmonic oscillator Schrbdinger

equation, show that:

w2 [ d mu d
(1) ——|— +

d mae\ |/ d
2m \dx h de

— X

1
x — — —x|b,| =|E, + ~hw|P,; and
2m \dx L] dx h 2

1
d,| =|E, - -tw|d,.
2

By operating on Equation (1) on both sides with d/d)( -mw/"ﬁ)(and comparing

the result with Equation’2),show that (d/dx=mw/hx)$,= P, ywhere ¢

n+1

is an eigenfunction with £=E_ ;= En+ Rw.“This shows that if Eqg=%Hw,

there are energies £, = (n + J )'ﬁw.51a rting with $y= ae
mw/h, find &y and P, by this method.

-1,2 2
e ih w=

19. Verify that the expectation values for the energy and its uncertainty AE given in

Equations (7.109) and (7.1 10) dre correct for the harmonic oscillator wave packet,

Equation (7.107).
20. Show that the expectation value of the momentum is the same (§ the Newtonian
momentum, p= mV = —MmwxXg sin wt for the ‘;imp|e harmonic oscillator wqQve

packet, Equation (7.107)

21. Find the potential energy in the one dimensional Schrédinger equation that is

satisfied by the wave functic1n:

Yix, 1 _ Ve

Show that the probability density is:

{a

ARV =N iht/m

vy -

—
Vaviet + 65242 m?

What is the meaning of this density?

Answer: vV = —mgx.

22

1 [x = (pot/m) ~ Yo gt*]?

exp
2 a? + iht/m
mgt + po  (mgt + po)’
h 6m29h
] 2.2 t
exp *(1/2 gf ) Po /m 1
(' + H4Yym?) 1

Show that for the quefuncﬁon of Problem 21, the expectation value of the

momentum is the Newtonian value <px>: pPo + mgt, for the potential energy

v =  —mgx.



hydrogen atom and
angular momentum

We have seen how electrons can behave like wdves when traveling from one
point to another, such as when they pass through crystals and are diffracted iusf
like x rays. In this chapter it will be shown how the wavelike character of elec-
trons,. as described by the Schrédinger equation, can be used to explain many of
the observed properties of hydrogen atoms. A hydrogen atom at rest is to be
pictured as consistng of a negatively charged electron and a much more massive,
positively charged proton. The attractive Coulomb force between the oppositoly
charged particles keeps the electron bound to the heavy proton, which remains
nearly at rest while the electron probability waves may oscillate in many differ-
ent ways in the nearby neighborhooo of the proton. The states of oscillation,
having a definite energy-or definite frequency--are quite stable and are
called stationary states. Transitions between these stationary states give rise 1o
the emission or absorption of photons of discrete frequencies, and hence to a
discrete  spectrum.

The positions of the stationary state energy levels were first calculated by Bohr
using some very simple postulates, a number of years before the Schrédinger
wave equation was discovered. Although Bohr’s theory was not entirely correct,
when the wave equation was solved for the hydrogen atom the energy levels
were found to lie at exactly the positions calculated by Bohr. The problem of the
hydrogen atom, because it involves only two particles, is one of the very few
problems for which the Schr&jdinger equation is exactly soluble in terms of simple
functions. The solution of this problem and its agreement with observation has
been one of the most spectacular successes of quantum theory.

We shall first briefly discuss the Bohr theory of hydrogen. We shall then see
how the wave equation leads to quantization of energies and will discover, as
well, that the wave equation implies that the atom's angular momentum is

quantized.

1 PARTICLE IN A BOX

Before discussing the theory of hydrogen in detail, it will be useful to recopitulcie

some of the ideas used in Chapter 7 in the quantum mechanical description of a
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particle in a one dimensional box. There it was seen that a discrete set of sta-
tionary state energy levels arose due to the confinement of the particle within the
box of finite size. The smaller the box, the more widely spaced were the energy
levels.

The energy levels of the particle in the one dimensional box may be repre-

sented in the energy level diagram in Figure 8.1, where energy is plotted up-

n=4
n=3
n=?2

rL n=1

Figure 8.1. Energy level diagram for the particle in a one dimensional box

wards, with the horizontal lines representing the allowed values of the energy.
These are the stationary states of the system, and if the system is perturbed
S|i\ghf|y, it may make transitions between states and conserve energy by emitting
or absorbing a photon. If, for example, the transition goes from an upper state
of energy Eu to a lower state E{, the frequency of the emitted photon will be

given by:

hv - E, £, - ’;i (8.1)

Since the energies are discrete, the possible frequencies V are discrete, and the
spectrum will also be discrete.

Atoms are systems in which electrons are confined to a small volume, known
to be of dimensions on the order of a few angstroms. In this case, the potential
energy is negative, and is due to the attractive Coulomb force between electrons
and nucleus. Although the particle in a box has zero potential energy, and moves
in one dimension rather than in three as do the electrons in atoms, we should
be able to get a rough idea of the energy level spacing in atoms, arising from
confinement of the electrons, by comparing the lower energy level spacings of a
purticle in a box whose size is roughly that of an atom.

For example, let us cc\|cu|01e the wavelength of light given off in the transition
from the state with n = 2 to that for n = 1 for a length [ of the box equal to

three Angstroms. The energies for the particle in the box are given by:

L) S (8.2)
Then for the 2 —> 1 transition,
3 h? h
Ez_E1=—_=hV’=“E (8.3)



8.2 Balmer’s experimental formula

) -3
Therefore, using form the mass of the electron, 9.1 1 X 10 3 kg,

\ = 8ml%  8(9.11x 10°¥)3x 1073 x 10°%)
© an 3(6.63 x 10°%)

~ 107m = 1000 Angstroms. (13‘,4)

This is comparable to the wavelengths emitted by atoms for transitions between
the lower states, which strongly Suggests that the wavelike character of the elec-
trons in the atom is responsible for the observed discrete spectra.

It should be noted that the reciprocal of the wcve\iengfh of the emitted light is
given by a simple formula, involving a difference between the energies of two

stationary states:

1
v = € (3.5)

BALMER’S EXPERIMENTAL FORMULA FOR THE
HYDROGEN SPECTRUM

We shall now consider in detail the lightest and simplest element, hydrogen. The
spectrum of hydrogen contains many discrete lines. By fitting the experimental
data, Balmer showed in 1885 that the values of the wavelengfhs in this spectrum
can be expressed by the following formula:

1 1 1 .

— = RH — 3 n,; = ], S, .y My = Ny - 1, Ny 4+ 2, . (86)
A nj n;

The Rydberg constant Ry has been rneasured with great accuracy by spectro-
scopists. It has the value:

R, = 10,967,758.1 m ™! 8.7

The fact that, as in the case of the particle in a box, I/X is proportional to d
difference of terms suggests that the hydrogen atom has stationary states of
definite energies, and that transitions between these states give rise to the
discrete spectral lines. For a transition from some energy level EU down to a lower
level E{, the values of I/X would be given by Equation (8.5) above. In the case
of hydrogen, when the electron and proton are separated on infinite distance,
the potential energy is defined tc be zero. The potential energy in the actual
atom must therefore be negative. The magnitude of the potential energy must be
larger than the kinetic energy in order for the system to remain confined in a
bound state, Then the nonrelativistic energy levels should be negative. Upon COmM-
pqrison of Equation (8.5) with the experimental result in Equation (8.6), we see
that apart from an additive constant, the values of the hydrogen atom energy
levels must be given by:

£, - S h o123, (88)
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8.3 SPECTRAL SERIES FOR HYDROGEN

The energies E,, = —Rh,hf/n2 can be represented by the energy level diagram in
Figure 8.2. The lowest-lying level is labeled n = 1. As n takes on larger and
l:
0
n=4
n=3
n=2
|
i

[ n=1

Figure 8.2. Energy level diagram for the electron in atomic hydrogen. The zero of
energy is at the top of the diagram.

larger integral values, the energies En approach zero. In electron volts:

-(1.097 x 1 07)(6.63 x 107%*)(3 % 10%)

E} = _RHhC = ;
1.6 x 107" j/ev
= —13.6 eV (8.9)
The value of E2 is one-fourth of this or -3.4 eV{. A transition from the n = 2 to

the n = 1 state would then corespond to a photon of (energy --3.4—( — 136) eV
or 10.2 eV, with a wavelength of 1216 angstroms in the ultraviolet. Transitions
down to a given state from all higher states give rise to series of spectral lines
which have been given the names of the scientists who first observed them experi-
mentally. Thus, for example, the various transitions n =2 —> 1= 1, n =3 —*»
n =1, etc., down to the lowest (ground) state, corv’espond to a series of ultra-
violet lines known as the A'_yman series. The 1216 angstrom line calculated above
is the line having the longest wavelength in this series. The transitions leading to
the Lyman series are depicted schematically in the energy level diagram, Fig-

ure 8.3. The names of the various series of lines are given in Table 8.1. Within

Lymam
series

1

Figure 8.3. Energy level diagram showing the series of transitions down to the ground
level which give rise to the Lyman series of spectral lines.

each series, the lines are labeled «, ﬁ, Y, 6. . . in orcler of decreasing wavelength

(increasing energy). The «, ﬁ, Y. 0 lines of the Balmer series lie in the visible.



8.4 Bohr model

TABLE 8.1 Names of the Series of
Spectral lines observed in Hydrogen.

n=2,3,.. *n=1Lyman series

n=3,4,.. *n = 2 Balmer series
n=4,5.. —>n =23 Paschen series
n=5 6,.->n =4 Brackett series
n==617,..%*»n =75 Pfund series

Etc. unnamed

mple What is the energy in eV of a photon in the [3 line of the Lyman series?

ution The ﬂ line of the Lyman series corresponds to a transition from the n = 3 state to

then = 1 state. The energy is:

7 —-34 8y/8
£ RHhc('I _ 1V (1097 x 107)(6.63 x 107)(3 x 10%)(%,)
9 1.6 x 107" j/eV

=12.1eV

8.4 BOHR MODEL ForR HYDROGEN

We have inferred from the experimental data that there exists a series of energy
levels in hydrogen. This is a compoct way of describing the experimental dclh:],
and is certainly consistent with the previous discussion of de Broglie waves. Lel Us
now approach the bound electron-proton system from the point of view of theory,
and see if we can predict or explain mathematically why the energy levels, in
hydrogen have the values they do have. We will first discuss the theory of Bohr,
in which the electron is pictured ¢I$ moving in an orbit described by Newtonian
mechanics, but with an additional condition on the orbit circumference due to
the wave properties of the electron. This theory is not correct. However, because
it agreed with experimental energies so well, it did cause people to think more
about the wave properties of particles and eventualy to find the correct theory.
Also, it gives an intuitive, although incorrect, feeling for the quantization of the
orbits.

We first consider those aspects of the Bohr model of hydrogen which can be
treated using Newtonian mechanics. In Bohr’s model, an electron orbits around
a proton under the action of electrostatic forces. We will initially assume that the
proton mass is so large that the proton can be treated as being at rest. Also we
shall assume the electron moves in a circular orbit of radius r. The Newtonian
force equation F = ma, means that the electron mass times the centripetal
acceleration in the circular orbit i5 equal to the electrostatic force of attraction.

Thus, if the electron’s speed is v,

m\/£\ = i (8. 10)
\r ATegr? '

where e is the electronic charge and Z is the number of protons in the nucleus.

(For hydrogen, Z = 1, However, with Z = 2,3,_ . , one would have the Bohr
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model for singly ionized helium, doubly ionized Ilithium, etc.) The energy we
desire to find is, cccordir\g to Newtonian mechanics, the kinetic energy plus the
electrostatic  potential energy:

2
Ezlmy"’-_Zi— 81 1)

2 47r€0r

The speed may be eliminated between Equations (8.10) and (8.11) to find that
the total energy is:
1 Ze?

E= —- (8.12)
2 4egr

which is one-half the potential energy.

8.5 QUANTIZATION IN THE BOHR MODEL

Next we may use the wave nature of the electron to obtain quantization condi-
tions on the orbits of the electron which wil lead to a discrete set of energy levels.

The de Broglie wavelength is Planck’s constant divided by the momentum, or:

A= h (13.13)
my

Imagine the electron de Broglie wave propagating around in the circular orbit.
In order for it not to interfere destructively with itself after many revolutions, the
wave amplitude must fit continuously onto itself after each revolution. This would
mean that the circumference of the orbit is an integral number of wavelengths, so

that as the electron goes around the orbit, the wave is periodically repeated.
This condition is

m,A = 27r; my, = 1,2,3,... (8.14)

This equation may be rewritten from the expression for the de Broglie wave-

m v r = (.:_> . (%) = n;“;:, = m;ﬁ (13.15)

Since mvr is the angular momentum, Equation (8.15) states Bohr’s original rule

length as:

for the postulated quantization of angular momentum. This quantization rule
was generalized by Bohr and Sommerfeld to apply to elliptical orbits, but we
shall discuss only the circular case. The speed may be eliminated between the
quantization condition, Equation (8.15), and the Newtonian force equation,
Equation (8.10). The result, after solving for r, is:

4mwegm2h?

oo STCmen (8.16)

Zelm
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Finally, this radius may be substituted into the energy equation, Equation (8.6).

This gives the Bohr formula for the energy levels:

1 Z%'m 1 (8.17)
2 (4mesh)’ m?
This result says that the energy levels of the electron in hydrogen are nega'riive,
corresponding to a bound state, and are inversely proportional to the square of
an integer. Thus the energy level diagram will look just like that of Figure 8.2
from experiment.

The quantization arises in Bohr’s theory from a condition, Equation (8.15), on
the allowed values of orbital angular momentum. Physically, this can arise from
a boundary condition which, stated mathematically, takes the form of a per'u'od-
iCiTy condition. For a particle moving in a circular orbit, the particle’s position is
described by an angle ¢. This is quite different frorn the case of a particle in a
box, because the circle is endless. The wave, rather than bouncing back from 'rhe
ends, just keeps on going. If the wavefunction at the angle ¢ has the value
Y(¢), then as ¢ increases, Y(¢) will change in some fashion; if ¢ increases by 2,
so that the wave has come around to the same physical point, the wavefunction
is Yo+ 271'), and this should be the same as \ﬁ((p) itself. Otherwise, the wave-
function would not have a unique ‘value at a given physical point. Hence, instead

of a boundary condition, we have a periodicity condition:
Ye + 27) = Yo) (8.19

This equation is the mqthemqﬁccy| analogue of the requirement that the cir-
cumference of the orbit must contain an integral number of wavelengths.

We can now see if the energies obtained in Equation (8.17) have the correct
magnitude. In analogy with Equation (8.8), the energy derived from the Bohr

theory may be written as:

. —R ., he ‘
E= 3" (8.19)
m\ﬂ
where, since Z = 1 for hydrogen,
1 1 e? ¥ a?

R, = — (8.20)

h/mc \dmehe Y
The subscript % on R, denotes that we treated the proton as a particle of infinite
mass, since we assumed it was at rest. This constant R y has been written in terms
of two basic physical constants; the Compton wavelength, )\‘ = h/mc, which
was discussed in connection with Compton scattering of photons by electrons;
and the physically dimensionless fine structure constant & = e2/47reoﬁc. The
fine structure constant is an extremely important fundamental constant in physics
and occurs in many places, such as in small corrections to atomic energy levels
due to relativistic and intrinsic angular momentum effects. The Compton wave-

. -2 .
length is )\c = 24263 x 10 m; the fine structure constant has the value g =

219
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1/1 37.036. Therefore, R, can be evaluated, and is found to have the value:

R, = 1.09738 x 10°m"’ (13.21)

8.6 REDUCED MASS

The value of R, differs from the experimental value of RH of Equation (8.7)
starting in the fourth significant figure. The reader might well think that this
agreement is close enough. However, it can be made even closer. The fractional
error in the theoretical Rydberg constant R, is

R, — Ry, 6.0 x 10°

—= = : 8.22
Ry 1.09068 x 107 1830 ©:22)

We may also observe that the mass of the proton is just 1836 times the muss of
the electron, which suggests that we may be able to arrive at even closer agree-
ment if we take into account the motion of the proton.

In a two-particle system, one particle does not move around the other, but
both move around the common center of mass. The position of the center of mass
is given by:

rrm, + rym
r. - (re 97””) (8.23)
(me + my)
where the subscripts e and p refer to electron and proton, respectively. A|SC‘, the

position of the electron relative to the proton is:

o=t r (8.24)

The force between electron and proton depends only on the relative displace-
ment r,. If Equations (8.23) and (8.24) are solved for r, and I, in terms of
T, and r, and substituted into the Newtonian force equations F = ma for the
two particles, then two equations result, one for r, alone and one for r, alone.
The equation for r.simply states that the center of mass of the system is not
accelerated. The equofion for r, gives a radial equation similar to Equation (8.10)
but with r replaced by the relative distance r, and m replaced by u =
memp/(m.3 + m,). The quuntity u is called the reduced moss. Likewise, the
total orbital angular momentum of the atom, including a small contribution from
motion of the nucleus, depends only on @ and r,. It is gvr,, where v is the speed
of the electron relative tc the proton. If the total angular momentum is set equal
to m,h in analogy with Equation (8.15), all the theory is as before but with u

replacing m in the energy. Thus the energy levels are
5 (8.25)
¢

Thus, when the slight motion of the proton is taken into account, the predicfed
value of the Rydberg corstant for hydrogen is
L 2

1 1 e’
Ry = -——-—[—— (8.26)
2 (h/uc) 47r6011‘c>
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TABLE 6.2 Experimental Values of the Rydberg
Constant for Some Multiply-lonized Atoms

Atom Rydberg Clonstant
m
yH! 10,967,758.1
H? 10,970,741.9
H? 10,971,734.8
,He® 10,971,734.4
,He* 10,972,226.4
5Lié 10,972,729.5
s 10,972,872.3
+Be’ 10,973,062.3
sB" 10,973,183.5
+C1 10,973,228.6
SN 10,973,300.4
408 10,973,353.9

This agrees with experiment to seven significant figures. The Rydberg constants
for other similar systems such as singly ionized helium, doubly ionized lithium,
etc., which also have hydrogen-like spectra, may be found by putting in the
reduced mass for the nucleus-electron system and by multiplying by the square
of the nuclear charge number Zz, Qs in Equation (8.17). These agree equaly well
with experiment. A list of some observed Rydberg constants for multiply ionized
atoms is given in Table 8.2. The Bohr model thus gives a simple and compact
explanation of an enormous amount of experimental data.

The characteristic size or “radius” of the hydrogen, atom for the ground state
may be found from Equation (8.16) using m, =1 and Z = 1. In terms of the
fine structure constant and the Cc\mpton wavelength, this is (neglecting reduced

mass corrections),

= 0.529 x 107®m = 0.529 Angstroms 8 27)

The speed of the electron in its orbit may be found by substituting the radius r
of Equation (8.9) into Equation (8.8). ‘The result is
v (49
(8.28)
4 m,
Then, for the ground state of the hydrogen atom, v/c is about 7‘37, much less

than unity. This justifies the nonrelativistic treatment in the theory.

SCHRODINGER EQUATION FOR HYDROGEN

We have discussed a simple picture of the hydrogen atom which agrees well with
experiment as far as the energy levels are concerned. However, this model cannot
be used in finding the probabilty of a transiton from one state to another with

emission or absorption of a photon. It also cannot be applied successfuly to more
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complicated atoms such 1§ a neutral helium atom with two electrons. Further-
more, although with the Bohr theory the quantum number in the energy expres-
sion is proportional to the orbital angular momentum, the correct theory to be
discussed next shows that the energy is actually not dependent on this angular
momentum.

The correct way to approach these problems is by means of the three dimen-
sional SchrBdinger equation. If for the hydrogen atom the two-particle wave
equation is used, it may he separated into a part describing the center of MQss
motion and another part describing relative motion. The part giving the relative
motion is found to be similar to the Schrodinger equation obtained when the
mass of the proton is ossumed to be infinite. The only difference is that in place
of the electron mass m, the reduced mass M appears. Let us then, for simplicity,
temporarily assume the proton is infinitely massive and is placed at the origin.
After deriving the energy levels, wWe can then introduce the small corrections due
to motion of the nucleus about the center of mass by making the replacemeni
m -- WU

The electron is at position (x,y,z) a distance = (X’ + y2+ z?%)V% from

the proton. In three dimensions, the kinetic energy operator is:

p _ h* (0% & 0*

= 4 =t = (8.29)
2m 2 mdddx? dy?  9z?
The potential energy for the hydrogen atom, where 7 = 1, is:
e’ (8.30)
= — 8.30
4mweyr

For a wave function of the form ¥ = {(r)e” ™, a stationary state, the Schrod-
inger equation in three dimensions is then:
-h2 (’2'¢/ 621// 62¢/ e:!

= t + —5)-—v=E 8.31
2m \dx? dy? d9z* 47re°r¢ v @31

Because r is a moderately complicated function of x, y, and z, whereas the
potential energy depends only on r, it is more convenient to work with spherical
polar coordinates r, 6 and ¢. These coordinates are defined as follows: r is the
distance from the origin to the electron as seen in Figure 84, ¢ is an angle in the
Xy |:>|cme, measured from the positive x axis to the projection of the vector r onto
the xy plane; 0 is the angle between r and the 2z axis. Thus the coordinate
transformations are:

ro= \/?TVyZ + z? x = rsinflcos ¢
S22
6 = tan ' (XY L0 g y =rsinfsing (8.32)
V4

¢ = tan”! <Z> z = r cos 0
X
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Figure 8.4. Spherical polar coordinates.

The kinetic energy operator expressed in spherical polar coordinates is derived
in Appendix 1. The result of making the transformations to spherical p()h:lr

coordinates is:

2 H? (a’ 29 1 9 19 LR

p = -———\l+-—+-+ — —t — (8.33)
Per 2m \dr? rdr r? 002 rPtan 630 r2sin?0 dp?
With this operator, the Schr'cidinger equation becomes:

A A S TR N 2R B | S aw) e’y

- — + -
ar? r dr r? 96? r*tan 6 06 risin? f de?

= EY

2m ” -47reor

(8.34)

PHYSICAL INTERPRETATION OF DERIVATIVES WITH
RESPECT TO r

The terms in Equation (8.34) involving only derivatives with respect to r have a
very simple physical interpretation. Suppose we have a steady source of particles
at the origin, which emits particles of definite energy that travel radially outward
symmetrically in all directions. This corresponds to ¢ stationary spherically sym-
metric de Broglie wave propagofung radially outwards, which will be described
by some wavefunction Y(r,t)= ¢ (r)ef'.f'/ﬁ. It is not difficult to guess what the
form of the spatial part of the wavefunction must be. In order to have an out-
going spherical wave, Cb(r) must involve an exponential factor of the form
exp(ip,r), where p, is the radial component of momentum of the particles. This
is analogous to a factor of the form exp(ipxx) for a beam of particle:, of
momentum P, propagating in the x direction.

In addition, if the system is to remain stationary so that particles do not pile
up at any one radius, the number of particles to be found inside a spherical shell

centered at the origin of radius r, area 47r? and thickness dr, must be the same
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for all r. Thus, 1¢(r)‘2'47rr2dr = constant, independent of r. The probability
density llﬁ(r) l 2 must be inversely proportional to the square of the radius. This is
the quantum analogue of the well-known inverse square law for the intensity of
outgoing spherical waves, found in classical physics. Since y’/(r) J 2 is propor-
tional to 1/r2, the amplitude 1,0(1’) itself must be inversely proportional to the

radius itself, so we would expect the wavefunction to be given by:

Aeip, ok
¢(r) = —— (13.35)

i{p, r—EN/R
Ae ™’
Y(rt) = — (13.36)
r
We may now use this radial wavefunction @(r) to derive the form of the
operator corresponding 1o p,, the radial component of momentum. Since Eis
definitely known, and E = pf/2m, the radial momentum must be definitely

known, and so (p(l') must in fact be an eigenfunction of P,op with eigenvalues p,.
We might expect, by analogy with one dimensional wave motion, that D op

would involve a term of the form h/i{d/0r). However, if we differentiate P (r)
USiI"Ig this operator, we find that

. ip 1/f
ﬁi d(r) = ﬁ J <L>= (p, — 1i)d) (13.37)
i

i dr dr r ir

because of the appearance of the factor r in the denominator of (I?(r) Thus & is

not an eigenfunction of h/i(0/dr). However, the above equation can be rewritten

7i<i . l)q) _ p.d (8.38)

1 \dr r

as:

Therefore, ® is an eigenfunction of —ihi(d/dr + 1 /r), with eigenvalue p,. We

can therefore identify the operator on the left of the above equation as:

Hifo 1
R P - 8.39
Prop = f((?r + > ( )

r

From this, the kinetic 2nergy operator corresponding to radial motion can
be obtained as:

bty B

2m\Jdr r/\dr r

# [7v

1d 14
LEg 1%, T 1w ¥
m r

r dr r dr r?

1
- ¥+
fzy,/

Y 20y

2m | dr® rar

(8.40)
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These are precisely the terms involving derivatives with respect to r in E(::|Uc1-
tion (8.34), and thus may be interpreted as the contributions to kinetic energy clue
to radial motion.

The remaining terms, involving derivatives with respect to ﬁand ¢, will be
shown later to have a similar interpretation in terms of contributions to kinetic

energy due to rotational motion.

SOLUTIONS OF THE SCHRODINGER EQUATION

It has been found that there exist energy eigenfun(:ﬁon solutions. of Equation
(8.34) which may be written in the formiof a product of functions, each factor
in the product being a function of only one of the independent variables r, f

and ¢. The solutions can be wiitten as follows:

Votm, = Roi(r)O 4 ()P, _(¢) (8.41)

0

where R,,,{ (r) is a function only of r; O{'" (0) is a function only of 0; and ‘1’,%
L4

is a function only of ¢. The energy levels depend on n, a positive integer, but not

on { or m; £is an integer associated with the total angular momentum such

that 0 < f < n; and m, is a positive or hegative integer, or zero, associated

PR t

The simplest of these solutions, corresponding to the ground state, is ON2 in

with the Z component of angular momentum such that m

which the wavefunction depends only on r and not on f# or ¢. In this c¢ase,

the Schrodinger equation, Equation (8.34), reduces to:

wﬁ<°’2¢ ' 21%)_ e’

< = F .42
dr? rdr v (8.42)

2m Amwegr
and the simplest solution is:
3 —rli
Yo = V1/ma® e (8.43)

where the constant a is the Bohr radius, equal to 0.529 angstroms for hydrogen,
and given by:

47 eoh?
a = —= (8.44)
me
The labels on the wavefunction 1[1100 mean n = 1, ¢ = 0, m, = 0, as will be

seen. The function is normalized so that the integral of the probability dev’ISH‘y
¢*¢ over all space (0 <r<=,0 < f# < m 0 < ¢ < 271') is unity. We ¢an
show that this is ¢ solution by direct substitution into Equation (8.34) or (8.4.2).
Differentiation with respect to r gives us:

d(e™’® 1 e/

de ) ——e” (8.45)

dr a

so that the second term in Equation (8.42), —(ﬁz/Qm)(Q/r)d¢‘oo/dr, cancels
the potential energy term, ‘(6‘2/47“0’)\&100- Two derivatives of 4 are
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equivalent to multiplying by a factor of ]/02, so the energy must be:

2 4
h l2=- —me (8.46)

Ey=——-
" 2m a 2(4megh)?

This is identical to the ground state energy given by the Bohr theory.
In fact, solutions to this three dimensional equgﬁo‘n, Equation (8,42), exist
which satisfy the boundary conditions, provided the energies have only the

values given by the Bohr theory formula:

—me4

E, = ——— > —
2(4meyhin)?

(8.47)
However, the integer n, which is called the principal quantum number, has
nothing to do with angular momentum. For a given value of the integer, there are
2 ) ) ) ) ) )

N solutions which differ in their dependence on the angular variables 0and 728
All these solutions have the same energy E,; they are said to be degenerate. In

Table 8.3 are given all the wave functions for n = 1, 2 and 3.

TABLE 8.3 Normalized Wavefunctions for Low--Lying States of Hydrogen.

1
n-=1 Y100 = l/f—s e /e
o

] r
—_ ex - —lin fe*¥
Y 8V md @ p( °'> ©
1 2r 2 r? 1r
n =3 = — ] - - - 4 — —_——
i 3\/§7ras< 3a 2702>9XP< 3°>

Vi = %—ir.a—:’é' <l - %:—’>exp <_%:_,> cos

Va1, 1 = 22—7]—3:; <l - 2(’;) exp <—% g) sin f e

Va2 = LI exp <_

Va2, 1 = ]_l_ﬁexp <—1£)sin6cosﬂe*i“’
3a

1 12 . o
Va2, 42 = ————E—Qexp e sin” f e **"
a 3a
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Figure 8.9. Squares of hydrogen wavefunctions for 3d states with m=0, + 1, +2,






Figure 8.10. Squares of hydrogen wavefunctions for 4d states with m =0, +1, £2.
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Figure 8.12. Square of 6f (m = 0) hydrogen wavefunction.
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Figures 8.5 through 8.12 are probability density pictures of the squares of
some of these wavefunctions. These pictures have been drawn in such a way that,
if one were to make a few thousand measurements of position of the electron in
the given state, and ther plot all those positions as dots on polar graph paper
with r versus (9, the density of dots would appear as in the pictures. The density
of dots is thus proportional to the probability of finding the electron at the
plotted r and 0.

The reader may verify that the wavefunctions given in Table 8.3 satisfy
Equation (8.34) with the proper energies, by direct substitution into the equa-

tion. In general, the functions, R, are of the form of an exponential e/

[
times a polynomial in r; the functions, O)(""w are of the form (sin 0)""“’ times

a polynomial in cos 9, and (I?m ((p) is proportional to e . These wavefunctions
¢

satisfy the general orthogonality properties discussed in Appendix 2:

de\//,,*{,,,w ‘#,,uﬂr,,,vw =0 uless n =, £ = &, m, = m, (8.48)

BINDING ENERGY AND IONIZATION ENERGY

We will frequently be interested in systems in which the constituent particles have
negative energies due 10 the attractive forces which bind them together. Such
particles might be electrons in atoms, protons in a nucleus, or water molecules in
a drop of water. To remove any one of the particles from the system requires the
addition of a positive amount of energy, which is called binding energy. In other
words, the term, binding energy, refers to the positive amount of energy which
must be added to a system of particles bound together by attractive forces, in
order to separate the system into its constituent particles and place them at rest
an infinite distance away from each other. Sometimes, the term is used for the
amount of energy required to remove just one of several bound particles of a
system out of the range of the attractive forces; then the specific particle to
which the term refers should be made clear from the context. For excmp“e, the
binding energy of the hydrogen atom in the ground state is 13.6 €V, since this is
the energy which would have to be added to the atom in order to separate the
electron from the nucleus. The binding energy of an electron in an excited state of
hydrogen is less than this, since less additional energy is required to separate the
electron from the nucleus. Thus, the binding energy depends on the specific state
which the system is in initially.

The ionization energy of an electron in an atom is the energy required to re-
move that electron, when in its ground state, from the atom. The ionization
energy is thus the same as the binding energy when the electron is in its ground
state.

ANGULAR MOMENTUM IN QUANTUM MECHANICS

In Newtonian mechanics, a radial force, such as the Coulomb force, exerts no

torques about the origin, and thus angular momentum is conserved. By investi-
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gating the meaning of angular momentum in quantum mechanics, we will be
able to see the quantum analogue of the conservation of angular momentum. We

will find that the angular part of the wavefunction, which is ecm w(ﬁ)(l)m*a(@)‘

corresponds to an eigenfunction of the total orbital angular momentum oper-

ator, and that CPm (‘p) is an eigen'funcﬁon of the operator corresponding to the 2z
@

component of the angular momentum. Thus, the total angular momentum and the
z component of the angular momentum of the atom are definite numbers inde-
pendent of time.

Just as momentum itself is represented by a differential operator in quantum
mechanics, so is angular momentum. In Newtonian mechanics, in terms of t and

the momentum P, the vector angular momentum of ( particle is given by:
L=rxp

The same definition is used in quantum mechanics, but with the momentum
operator inserted for P. Thus, for example, the z component of the angular
momentum operator is:
. d d
L, =xp, yp,= —iffx—- - — (8.49)
dy dx

.12 ANGULAR MOMENTUM COMPONENTS IN SPHERICAL
COORDINATES

It is desirable to express this operator in terms of spherical polar coordinates.
This could be done by straightforward coordinate transformations; however, it
is easier to note that since only first derivatives occur in Equation (8,49), in
spherical coordinates I, must be some linear combination of the derivatives with

respect to r, f and "2
(8.50)

where A, B and C can be functions of the coordinates. The coefficients A, B and C
can easily be determined by comparing the effect of the two expressions for Lz
when differentiating some simple functions. If the latter operator acts on the
function, r = \/-)(2+ y2+ z2,it gives A. But the form, Equation (8.49), op-

erating on [ gives:

) d
—ih X—-vya—r:iﬁ Xy . - YV _o 85 1)
dy dax r r
Therefore, A = (. Likewise, Ll operating on cos 0 = z/r gives —Bsin 6' =

—B(x2 + yz)m/r. The form, Equation (8.49), operating on z/r gives zero
since, as we have seen, it gives zero when_operoﬁng on a function of r and there
is no derivative with respect to z cppeqring in Equation (8.49). Therefore, B = 0.
When L, operates on tan ¢ = y/x, it gives C sec2 ¢ = C(X2+ yz)/xz. The form,
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Equation (8.49), then gives

[ 4 d z

¢ .

ity 2N = —i 1+ L (852)
dy dx J\ x x

\

Therefore, C is —iﬁ, and the operator for the z component of angular momentum

is:

d
L = —ih — (8.53)
de

In a similar way, we could show that

d cos ¢ a
L, = ih (s — o+ em———
I <Sm ¢ ad ’ tan 08(,0)
L = i (~cos g 2 S 0 (8.54)
r T T T an hae '

When any of these angular momentum operators act on a tunction of r only, the
result is zero, since there is no derivative with respect to r involved. Thus, the
ground state wavefunction and, in general, wavefunctions for which 4 =0 and
which depend only on r, not on Hor ¢, correspond to states of zero angular
momentum. This is in contrast to the Bohr model, where the ground state had an

angular momentum of f.

EIGENFUNCTIONS OF L, AND AZIMUTHAL QUANTUM NUMBER

Using the L, operator of Equation (8.53), we may give a rigorous interpretation
to the number m,. In the wavefunction lﬁn{mw, the ¢ dependence is contained

in the factor
@, (¢) = &"¢° (8.55)

Therefore, this is an eigenfunction of the Lz operator, because

Le™ ¥ = —ih 2 &™” = m he™ (8.56)
de
Hence, such a state can be said-to possess a definite value for the z component of
angular momentum.
These values must be quantized. Since the probability density \L 2 must be
single-valued in space, a reasonable condition on (I) is that it has the same

X imw(Zr)
value at ¢ = 0 as at ¢ = 27, This means that e

= 1, or that m, is an
integer, which could be positive or negative,, or zero. This argument is really the
same as that used in discussing the Bohr model, in which it was necessary that the
wave amplitude fit onto itself after one revolution in order that the de Broglie
wave not interfere destructively with itself. Mathematically, this is expressed by
the periodicity condition (bm‘p(cp): q’,,,'p(qo + 2m), which can be satisfied only

if m, is an integer. m, is called the azimuthal quantum number.
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Thus, the z component of angular momentum has the possible values ﬁmw
where m, is a positive or negative integer, or zero. The functions given in
Table 8.3 have z components of angular momentum, varying from -(n =~ l)ﬁ
to +(n - 1)h for a given n. These are zero for n = 1; zero and =%h for n = 2;
and zero, +h and 42k for n = 3. No solutions exist for values of m, outside
the range m, I < (n - 1)h.

It is also possible to find sums of the wavefunctions g{/,,ﬁ,,,w such that L, or Ly
yield an integer times h. For instance, the reader may verify, using Table 8.3 and

Equation (8.54), that:

1
:;10 = —=(Wan, 1 T ¥
12 \/2(3& : Yaa)
and

: 1 1
¢31,i1 = _(‘rl/i:l,—l - ¢31,+1) + —T_\//:no (8.57)
2 V72

are eigenfunctions of L,. However, except when 4= 0, for any single wgyve-
function lﬁ"{mw, the x and y components do not have such definite quantized

values.

.14 SQUARE OF THE TOTAL ANGULAR MOMENTUM

Another operator exists which does yield @ definite quantized value; this is the
square of the angular momentum, 12 = Lf + Lf + LZ. The meaning of the

square of L, is, for instance, just the differential operator [, applied twice:

X

L2y = L (L), and 1% is the sum of three such terms. In Appendix 1 it is shown
that:

0, a1 8
46 tan 098  sin? § 902

2
LY = —n? v, (8.58)
It is interesting to note that this same combination of operators occurs in the
kinetic energy operator in Equation (8.34). Thus, the kinetic energy operator c:an
be written in terms of L2 as follows:
2 2
pr L

—~ 4
2m 2mr

2

The contribution to kinetic energy arising from the L2 term makes sense; in
classical mechanics, an object of moment of inertia | and angular momentum L
has a kinetic energy L7/2I, due to rotation. In this case, the moment of inertia
of the electron is mrz’ and the tatal kinetic energy can thus be written as the
sum of a contribution due to radial motion and a contribution due to rotational
motion. Since the only angular dependence in the Schr&idinger equation, Equa-
tion (8.34), is in the L? term, and the wavefunction is the product of a part
depending only on r and a parl depending only on the angles, the energy

eigenfunctions, \}/"{mp, must also be eigenfunctions of L2_
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8.15 LEGENDRE POLYNOMIALS

We next consider the eigenfunctions of the square of the total angular
momentum, LZ, in the special case in which the z component is zero, or m, = 0.

Then there is no dependence on ¢ and the operator effectively depends only on

8:
d? T4
12y = -h?|— + —— — 8.59
v (802 * tan 0 60>¢ (8:59)

Let us look for wavefunctions PX, (cos H), finite at 0 = 0 and 0 = T, such that

L*P, = (constant) x P, (8.60)

The function P{ here is the same as 040(9) in the hydrogen m, = 0 féﬁctions’
¢n—£0~ The constant on the right of this equation resulting from the action of L2
is the eigenvalue, or a possible value of the square of the total angular
momentum. One solution is Py(cos 0) = 1, a constant. This corresponds to a state
of total angular momentum zero, as was the case for the /f, = 0 states of the
hydrogen atom in which the wavefunctions did not depend on f or ¢©. A second
solution is Pl(cos 6) = cos 8. The eigenvalue for his function is found by letting

1% act on it

d 2

%_83 = —sing @ (;géﬁ = —cos 0 (8.61)
Then, from Equation (8.59),

[2cos ) = ﬁ2<cos 0 +%%) = 2h? cos 0 (88.62)

In general, the functions P, (cos f) are polynomials in cos fl, called legendre
polynomials, in which only even or only odd powers of cos # appear for a
given 4. The highest power of cos f§ in the Ath polynomial is (cos (})t. The
Legendre polynomials are given in Table 8.4 for £ = 0, 1,2,3,4, along with

the corresponding eigenvalues. The general equation for the eigenvalues is

AL + 1% £=01,2, .. ..

TABLE 8.4 Some Eigenfunctions of L?for m, = 0.

Function Eigenvalue of L?
=0 Py=1 0 = h0(0 + 1)
L=1: P, =cosh 26 = KA1+ 1)
L=2 Pp=2cosif -2 6% = KB?2(2 + 1)
L=3 Pz Rcos’ ~ 3 cos § 1252 = K23(3 + 1)
L=a P = -335—«,54 9 ‘4_5“,520 + 8 20r? = Kh?4(4 + 1)
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Note that the total angular momentum squared is nof the square of an integer
times K2,

The above states all correspond to m, = 0. For states in which m_ is not
zero, it can be shown that L2 has the same eigenvalues rﬁ(/ﬂ + ])h2,

Since the square of the z component of a vector can never be greater than
the square of the vector, (ﬁm«,)2 < ﬁz,ﬂ(,f, + 1). Hence, the maximum value
of the magnitude of m, must be m, | = 4. If it were assumed that the maxi-
mum value of l m, were ,f, + 1, instead of {, then Lf would be
44 + 1) + £+ 1]Jh%, which is greater than A (4, + ])ﬁz. This is not possible.
Thus, actually the square of the z component, Lf, can never be as great as LZ.
The remaining contributions to L2 arise from x and y components squared; the
individual values of Lx and Ly remain unknown.

There are then 2 t{, + 1 possible values for the z component of the angular

momentum for a given orbital angu|ar momentum quantum number X,:
m,h=0, +h +2h,.. ., =4k

By letting L2 and Ll act on the various functions in Table 8.3, the reader may

verify the properties discussed for these functions.

SUMMARY OF QUANTUM NUMBERS FOR HYDROGEN ATOM

Detailed analysis of the complete wavefunctions,
¢nfﬂm = ‘?n{,(r)e"mw(a)(pm¢(:‘p) (8.63)

shows that the total energy depends only on the principal quantum number p:

My, and
—z "ite .
E,= ———n = 1,2,3,... (8.64)
(4meghn)
The energy does not depend on /f, or m,, as it does (incorrectly) in the Bohr
model. In order to satisfy the condition that the wavefunction goes to zero asr

goes to infinity, it can be shown to be necessary that tf, be less than n. Thus,
£=0,1,2,...,n 1 (8.65)
The three quantum numbers:

n = principal quantum number; n= 1, 2, 3,...
4 - orbital angular momentum quantum number; % =0,1,2,....n 1

m, - - azimuthal quantum number; my = —&,—JL+ 1,...0 ,...,-f—x,

¢

give a complete description of the possible states of a point electron moving in
the Coulomb field of a massive nucleus, neglecting the intrinsic angular mo-

2 distinct

mentum of the electron. For a given n or given energy, there are p
angular momentum states, so we say the energies are nz-fold degenerate. When
relativistic effects and the spin or intrinsic angular momentum of the electron are

taken into account, the energies are changed slighty and the degeneracy is less.

235
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Also, as mentioned at the start of the discussion, the reduced mass, M=
memp/(me + m,), should be used in the various equations rather than the

electron mass, to incorporate the effect of motion of the nucleus.

ZEEMAN EFFECT

The angular momentum (quantum numbers c:an be made observable in one way
by placing the atom in a magnetic field. A charged particle which has some
angular momentum also has a magnetic dipole moment. This magnetic moment
interacts with the field and causes a slight splitting of the energy levels into
additional levels. To see how this comes about, consider a classical negatively
charged electron, going around in a circle of radius r with speed v, as depicted

in Figure 8.13. The angular momentum is L = mvr. If the electron carries the

—e

Figure 8.13. A classical point charge moving in a circular orbit with angular momentum
L has an orbital magnetic moment which is proportional to L.

charge --e, then the current, or charge per second, passing a given point is the
charge times the number of times per second the charge goes around. The num-
ber of revolutions per second is v/2mr, so the current is —ev/27r. It is known
that a plane current | enclosing area A has a magnetic moment /A. Therefore,

in this case, the magnetic moment i, is:

ev 1 .
Py = — — 12 =- - evr (8.66)
27r 2
This can be expressed in terms of angular momentum [ = mvr. In this case,
e .
= ——L (8.67)
2m

This equation holds as a vector equation in quantum mechanics:

e
Py = — ==L (8.68)
2m
where -e and m are the charge and mass of the electron, and Lis the angular
momentum operator.
Now when a mogneiic field B is present, there is an energy of interaction

between the field and the dipole:

Eneg = —En'B = —B(u,), (8.69)
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if the z axis is chosen in the direction of the field. But (p,m)z is related to the z

component of angular momentum: hence, in terms of Ll = —iﬁ&/(?(p,
- eB
Emog = — L, (8.70)
2m

Further, in the hydrogen atom, LI is quantized and has only the values hmw‘
Therefore, the energy due to the magnetic field interacting with the magnetic
moment can take on only the values:
Emog = — Bm, (8.71)
2m
The constant e‘h/?m is called the Bohr magnefon, and is denoted by ﬂ; [)’ =
0.927 x 1 07% joule/weber/m?.
Now let us return to the Schrﬁdinger equation, 1o see what happens to the
energy levels. The total energy of the electron will be comprised of kinetic
energy, plus potential energy due to Coulomb interaction, plus potential energy

due to magnetic interaction with the applied field. Hence, the Schrodinger

EY - P +g,_)¢ +Emg¢ (8.72)

2m

equation would be:

Using a wavefunction 1,0,,{,,,\0, which gives the ordinary energy levels En of

hydrogen, it is seen that the net energy will just be:

E = E, + Enog (8.73)

So the magnetic energy is an adolitive contribution, provided that the magnetic
field is not so large that the wavefunctions are changed appreciably by the field.

Actually, a large magnetic field can itself cause radical changes in the orbital
motion of the electron, so these considerations hold only if B is small enough
that Emug <« E,. Let us estimate the magnitude in electron volts of E,,,ag for a

typical field of B =1 .0 weber/m2 and m, = 1. This will be:

éh (0927 x 1 0°%)( 1 .0)
Emag = — B = —
2m 1.6 x 1077 j/eV
= 5.8 x 107%ev (8.74)

So this contribution is very small compared to the atomic level spacings, which

are on the order of several electron volts.

.18 SPLITTING OF LEVELS IN A MAGNETIC FIELD

Let us consider what happens to an atomic energy level when the atom is plqc;ed
in a magnetic field. For example, consider an n = 5§, /ﬁ = 2 level, as shown on
the left in Figure 8.14. In the absence of a magnetic field, there are 2 rﬂ +1=5

degenerate states,, described by m, = 0, ;t], :}:2‘, which all lie together and
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m¢=2
m¢=1
n=35 m‘p=0
my==1
m,= -2

Figure 8.14. Splitting of a 5d level into 2l t 1 = 5 components in on externally
applied magnetic field.

appear as a single level, as shown. But when B is different from zero, this level
will be replaced by a number of levels of energies, E, + Enqq. Since Epqg is
proportional to m,, the number of these levels will be equal to the number of
values of m, for a given It, 2 /f, + 1. In this example with & = 2, the five levels
are shown at the right of Figure 8.14. In a similor way, on /ﬁ = 1 level would
be split into three levels. So if we had an energy level diagram looking like the

left side of Figure 8.15, al zero field, it would look like the right side of the figure

B=0 8>0
- _ ¢
. 2= =2 2
=1 = )
2 _72—,1:5_..‘ ,,,,,, 0

/
/

Transition for @ single
line in the spectrum.

My
1
0
o1

Figure 8.15. Energy levei diagram showing the splittings of 4p and 5d levels in an
applied magnetic field.

when the field is turned on. Thus, in place of @ transition yielding a photon with

a single frequency, a number of different transitions are possible.

8.19 SELECTION RULES

It appears at first that in Figure 8.15 there are 5 x 3 or 15 possible transitions.
However, not all transitions have the same probability. From the theory of

transition probabilities, which will not be discussed in this book, it is found that
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only transitions for which the chenge A,f/ in /ﬂ is =1, and the changes Am‘, =
+1,0in m,have sufficiently high probability to be readily observed. This is
related to the fact that the solutions of Maxwell’s classical electromagnetic
equations for spherical light waves are eigenfunctions of the operator L2 with
possible quantum numbers /f,= ],2,3,.. ., but a solution for r?,= 0 is im-
possible. This means that the photon itself has a minimum angular momentum
corresponding to the quantum number rf, = 1. Only the '% = 1 case occurs with
appreciable probability for most transitions, Since the photon caries off one unit
of angular momentum, the angular momentum of the atom must change by one
unit, in order for angular momentum to be conserved. Therefore, A X, = :t];
and Am, = £ ],0 for the atom. We shall not prove these rules here, but only
state the so-called

selection rules: Af = %1

Am = =+l o 0 (8.75)
Thus, a transition from m, = 2 to m, = 1 is probable, but a transition from
m, = 2tom, = 0, = 1 has negligible probability.

NORMAL ZEEMAN SPLITTING

The selection rules are satisfied for the change in ,% in Figure 8.15, ,f, = 2 to
'f/ = 1. Table 8.5 shows the values of m, for the various lower states with ff, =

for the allowed transitions corresponding to the various possible values of m_ in
the upper state with /f, = 2. Altogether, there q@re nine allowed transitions.

Furthermore, these nine transitions give rise to Ownly three rather than nine

TABLE 8.5 Allowed Transitions for o 5d — 4p Transition.

Upper state X,: 2, Llomeer state /ﬂ = 1 values of
value of m, m,, for ollowed transitions
2 1
1 1,0
0 1,0,-1
-1 0,-1
~2 -1

spectral lines, because the spacings between the splittings are equal. The transi-
tions are indicated in Figure 8.16. If AEO is the energy difference between the
levels before the field is turned on, then for the Am = 0 transition, the energy

difference after the field is turned on is still:

AE = AE (8.76)
For the AM = =7 transitions, the energy difference with the field on is:
eh

AE = AE, ¥F—8B (8.77)
2m
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equal
spacings

(AB)g

* } equal
spacings

Figure 8.16. Allowed transitions for sd —* 4p lines which ore split into components
by a magnetic field.

Thus a line will be split into three lines; the magnitude of the splitting is propor-

tional to the magnetic fielcl. This phenomenon is observed in some lines of calcium
and mercury, and is called the normal Zeeman effect. Usually, however, various
elements show splittings with different magnitudes, and also with more or fewer
than the three lines predi(:fed here. This is called the anomalous Zeeman eﬁrecf,

and is due to electron spin.

ELECTRON SPIN

In explaining the anomalous Zeeman effect and other effects to be discussed
later, it is necessary to consider the possibility that the electron can have an
internal property. The electron is charged, and if it has internal angular momen-
tum or intrinsic spin, it mcly also have an intrinsic magnetic dipole moment. This
dipole moment could then interact with magnetic fields which are present, either
externally applied fields Qr atomic fields, and contribute to the energy of the
system. The observation of such energies would give evidence of the existence of
internal angular momentum.

Let us call this intrinsic angular momentum spin, and denote the corresponding
operator by S. The eigenvolues of 52 should be ﬁzs(s+ ]), just as for the
orbital angular momentum, where s is a spin quantum number. We would expect,
then, that the magnetic moment would be proportional to S, and that if this
magnetic moment is placed in a magnetic field, it can contribute to the energy.
If §;is the Z component of the spin, then the number of different values of S,
should be 2s + 1. This implies that there would also be 2s + 1 magnetic energy

terms, or that a level would split into 2s + 1 levels in a magnetic field.

8.22 SPIN-ORBIT INTERACTION

Now so far as the electron in an atom is concerned, it is always in a type of

internal magnetic field which leads to @ splitting of energy levels, called fine
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structure splitting. To understand this, consider the Bohr model of the atom,
where the electron moves in an orbit through the electric field produced by the
nucleus. If the electron has velocity v small compared to c, and moves in an
electric field E, we know from electricity theory that in the instantaneous rest
frame of the electron there is a magnetic field of B = —v x E/cz. Then there
is an interaction energy between the electron’s magnetic moment M, and this
magnetic field given by —f,, ‘B.if Eis pointing radially outward, as is approxi-

mately the case in atoms, it is of the form E = rf (r)‘, and therefore,
B = [r x (mv)]|— = == (8.78)

Since U, is proportional to the spin S, the energy is proportional to Sl., this is
called spin-orbit interaction. In place of one level, there will then ordinarily be
2s + 1 levels due to this splitting. In the { = 0 states there is no such splitting.
This is because with no orbital angular momentum there is no component of
velocity perpendicular to E in the Bohr picture. Thus there would be no B in the
electron’s rest frame with which to interact. So if the upper level is split into
2s + 1 levels and there are transitions to a lower f = 0 level which is not split,

one would expect to see 2s + 1 spectral lines due to the splitting.

In hydrogen, there is such a splitting; the magnitude of the splitting can be
calculated theoretically and has been observed with special instruments. The
splittings are much too small to be observed with a simple diffraction grating or
prism spectrometer.

In the alkali metals which consist of an electron orbiting a core of other
electrons bound tightly to the nu(tleus, the splittings are much larger. The obser-
vations show that the lines consist of very closely spaced pairs of lines. For ex-
ample, in sodium vapor the bright yellow color comes from a pair of yellow lines
at 5895.92 Angstroms and 5889.95 Angstroms. The fact that there is a pair of
lines or a doublet shows that 2s + 1 should be equal to 2, and therefore the

spin quantum number is

s =~ (8.79)

N

.23 HALF-INTEGRAL SPINS

If the spin quantum number is s = 14, then the magnitude of the square of the
angular momentum of the electron should be S(S + ])h2 =% h2. In discussing
orbital angular momentum, we found that the Z component of angular momen-
tum, was always integral. This resulted from the condition that the wavefunc-
tion be single-valued, so that it is the same for ¢ = 0 and ¢ = 2x. If we had
said that the function becomes its negative when ¢ changes by 27!', the prob-
ability density, which depends on the square of the wavefunction, would still be
single valued. This would have led to half-integral quantum numbers. While this

is not the case for orbital wavefunctions, half-integral spins do occur for intrinsic
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angular momenta of certain particles, and the spin wavefunctions do change info
their negatives upon rotation by 27r.

For a half-integral spin, the maximum magnitude of s, is still the total angular
momentum quantum number, s. Also, neighboring spin states are separated in
the Z component of angular momentum by h Thus, for a spin 3/271 system, the
possible values of s, are ’”3/25' Y h, V2 h, 3/27:" For the electron, with s = %,
the possible values of s, are = % h (spin down) and 2 h (spin up). Particles have
been observed with various integral and half-integral spins. The more funda-
mental particles such as electrons, protons, neutrons and muons, have intrinsic
angular momenta corresponding to Y2 h. Other fundamental particles such as

photons and some mesons have angular momenta corresponding to 0 or A.

STERN-GERLACH EXPERIMENT

An experiment was performed by 0. Stern and W. Gerlach in 1921, which
demonstrated directly that s = 2 for the electron. They passed a beam of silver
atoms through a strong inhomogeneous magnetic field. Such a field exerts a
force on a magnetic dipole which depends on the orientation of the dipole rela-
tive to the field. Silver contains 47 electrons, an odd number. Inside the atom the
electrons tend to pair off @ that their magnetic moments cancel in pairs, except
for one left-over electron, with § = '/2 and a magnetic moment, y_. If the
direction of the field B is taken to define the z axis, the potential energy of the

electron in the magnetic field is:

Emag = ”’m.B = - Mmz 'Bz (880)

The magnetic field is constructed so that Bl varies as a function of z; thus the
potential energy varies with z, and there wil be a z component of force:
—~dE B,

F o rog _ ., 9B 8.81
0z K Jz (6.81)

on the electron and hence on the atom. Because the magnetic moment is propor-
tional to S, it can take on only 2s + 1 orientations, giving 2s + 1 possible dis-
tinct forces on the particles in the beam. This would split the beam into 2s + 1
beams. When the experiment was performed, the experimenters found the beam

to be split into two. Hence again, 2s + 1 = 2, so that §= I

SUMS OF ANGULAR MOMENTA

In general, when treating (angular momenta in quantum mechanics, there are the
two types, integral and half-integral. If a system consists of parts which have
various angular momenta, such as several particles each of which has intrinsic
and orbital angular momenta, the vector sum of the various angular momenta

gives the total angular momentum. This total is ordinarly denoted by J. Thus,
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for @ single particle with spin operator S and orbital angular momentum

operator, L,

J=1+56§ (88'2)

Combinations of spin and orbital wavefunctions may be found that yield eigen-
functions of the total angular momentum operator squared, Jz, and of the z
component of the total angular momentum, Jz. Thus,, acting on these functions

the operators yields:
P = j(j + 1R (8.83)
J, = m,ﬁ (8.84)

Here ’ is the total angular momentum quantum number and m, is the z com-

ponent quantum number. There are 2j + 1 possible values of m,:

mo= =, =t (8.85)

The [ and m, may either be integral or half-integral, dlepending on the individual

angular momenta which combine to give the total.

6 ANOMALOUS ZEEMAN EFFECT

Let us now return to the discussion of the anomalous zeeman effect, where on
atomic electron in an external mognefic field shows splittings different from those
based on orbital angular momentum alone. This anomalous effect arises pri-
marily because the relationship between spin and magnetic moment is different
from that for orbital angular momentum. In the orbital case [Equation (8.68)],

1 e

m = —=—1 8.
u 3 (8.86)

However, for the electron spin, it has been found that:

Ry = - °- s (8.87)
m

These equations differ by a factor of two. This factor of two is predicted by a
relativistic wave equation which was discovered by Dirac in 1933.

When treating the splitting of spectral lines in a magnetic ﬂeld,we must con-
sider the total angular momentum of an electron J = L+ S,Then the states of
the electron are described by quantum numbers J and m,. If the relation between
magnetic moment and angular momentum were the same for the spin and orbital
parts, the splittings would be given in terms of m,, just as in the normal Zeeman
case they are given in terms of m,. One would then always see the normal case.
However, because of the difference in the magnetic rnoment relations, the mag-
netic moments of the resulting states of definite "and m, are somewhat compli-
cated. This gives rise to various kinds of splitting of the spectral lines in a mag-
netic field. By carrying out the analysis in detail using these ideas, one may

explain the anomalous Zeeman effect completely.
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The idea of angular momentum is important in quantum mechanics for the
same reason it was important in Newtonian mechanics; it is conserved relative to
a point if the potential energy does not lead to a torque about that point. The
conservation of angular momentum has been observed in an enormous number

of different experiments.

RIGID DIATOMIC ROTATOR

In classical mechanics a rigid symmetric top rotating freely about an axis of
symmetry through the center of mass has the kinetic energy L2/2I, where | is the
moment of inertia about the rotation axis, and L2 is the square of the angular
momentum vector. Certain quantum systems hove @ kinetic energy operator of
the same form, where L:E is the angular momentum operator given in Equation
(8.58). An example of such a system is a linear diatomic molecule such as Hz, Ng
or HC{, in which the atoms themselves are treated as point masses, separated
by a fixed distance. If we imagine a coordinate system placed at the molecule’s
center of mass, then the position of the line of centers connecting the two atoms
may be completely specified by the angles f§ and ¢ defining the direction of the
line of centers. Equation (8.58) then gives the operator corresponding to the
square of the total angular momentum. The moment of inertia is | = ;er, where
M is the reduced mass of the molecule and I the fixed atomic separation distance.
If there were a third particle in the molecule not on the line of centers, an addi-
tional angle would be needed to specify completely the orientation of the mole-
cule, and there would be additional contributions to the angular momentum and
to the energy.

If we consider only linear diatomic molecules, the Schrédinger equation for the

stationary states wil take the form:

2

EY(0.¢) = 5 V(0. 0) (8.88)

Hence, eigenstates of L2 ore also energy eigenstates. We have already seen that
the possible eigenvalues of {2 are of the form 'ﬁz&(& + 1); in the case of the
rigid rotor it is customary to introduce the symbol J for the quantum number

instead of 'f, Thus,
Y0, )= RUUL+ V¥, ) (8.89)

where J is a nonnegative integer. The energies due to rotation of the diatomic
molecule are then:
AU+ 1)
£, = —— (8.90)
21
An energy level diagram for these rotational energy levels is given in Figure 8.17.
Transitions between these rotational states are governed by the selection rule

Al = :i:], analogous to the selection rule on 'f, for atomic transitions. Thus, in a
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J=1
f e

Figure 8.17. Energy level diagram for the rigid rotator, E; = f?j(J+ 1)}/21. The
allowed transitions are governed by the selection rule AJ = +1.

transition from a rotational state characterized by the quantum number J 4 1,
down to the next lower level J, if the atomic electrons do not also change their

state, a photon of frequency v will be emitted, with:

hy = E .y E,
’;‘2
= E[(J + 1)J + 2 = 30 + 1]
2
= 7(J+ 1) (8.91)

The resulting rotational spectrum will therefore consist of lines equally spaced,
separated in frequency by Av = h/2xl. Measurements on these spectra thus
yield information on the moment of inertia and hence on the interatomic spacing.

To estimate the frequency region in which these lines will be seen, consider a
nitrogen molecule N2 with reduced moss 7 atomic mass units, and interatomic

spacing 2 2 Angstroms. The wavelengths will be com|parab|e to

2mel _ 27rc;,tr2_

8.92
+ N (8.92)

or a few centimeters, in the microwave region. The energy for J = 0 is E =
ﬁz/l ~2x 1074 eV, or about 107* times smaller than typical atomic electron
energies.

Actually, diatomic molecules are not rigidly bound ‘rogefher at a fixed separa-
tion distance, but can vibrate slightly back and forth along their line of centers.
This vibration is a quantum mechanical simple harmonic oscillation, and the
vibrational energies are quantized as well. |In Chapter 7 it was seen that the
energies are E,, = ?iw(n+ V2), where N is a positive integer and @ is propor-
tional to the square root of the effective spring constant. In most diatomic

molecules, the interatomic spacings stay quite close to their equilibrium or Qver-
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age values, which means the spring constant is rather large; usually, the spo\cings
between vibrational levels are roughly 100 times the rotational level spacings, or
around 0.01 eV; hence the molecular vibrational spectra lie in the far infrared.
These vibrational and rotational energy levels give rise to band spectra, con-
sisting of lines spaced so closely together that the spectrum appears to be prac-
tically continuous. These bands result from the molecules’ changing from one
vibrational state to another, while at the same time mony different rotational
transitions occur. Thus, near one vibrational line could be grouped many lines
corresponding to many possible different initial and final rotational levels, which

are relatively close togetlier in frequency.

summary

SPECTRUM OF HYDROGEN

The wavelengths of the observed lines in the spectrum of hydrogen are given by
the Balmer formula:

1 1 1
- =Ryl— - =1, n,=123,..
A § n? n? k

n, = n, + ],n1 + 2,..
where the Rydberg constant RH has the experimental value:
-1
R, = 10,967,758.1 m

The spectrum of the hydrogen atom can be interpreted in terms of an energy

level diagram where the discrete energies are:

E, = l’%’;ﬁ n=123,...
r

BOHR THEORY OF THE HYDROGEN ATOM

Bohr postulated that the stationary states within the hydrogen atom could be
characterized by a quomized value m‘p'ﬁ of the orbital angular momentum. This
can also be understood qualitatively by assuming that an integral number of
wavelengths of the de Broglie electron waves must fit into a circular orbit. Thus,

the tangential component of momentum is given by:
mvr = mvhmv, = 1,2,3,...

where r is the radius of the orbit and v is the speed. In addition, the centripetal

force necessary to bind the electron in the circular orbit is that due to the
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Coulomb attraction between electron and nucleus, or:

lTlV2 e2

r 4reor?

For hydrogen, the total kinetic plus potential energy of the electron is then:

E - —R:hc
m‘ﬁ
where
Roo= (<2 Y~ 09738 107m-!
* 2h \4reohe ) ‘ m

While this formula agrees well with the observed levels, it is conceptually in-
correct, because the exact theory shows that the energy depends on the radial
quantum number, n, and not at all on m,.

When the motion of the nucleus of mass M is taken into account as well, the
energy levels are given by:
~Ryhe

2
¢

E =
m

where
m 1 /e2 2

1+ m/M?I; \411'60'5

Ry =

and where

m

1+ ms/wm

is called the reduced mass.

SCHRéDlNGER EQUATION FOR HYDROGEN ATOM

In terms of momentum operators, the Schrédinger equation for the hydrogen

atom of an infinite-mass nucleus is:

2 2
v =Py _ _®
v 2m¢ AT eor
21 6 za;p) 1 af. oy
= ——{—— — ) + —_— 6 —
2m |r? dr <r ar r?sin 600 o a0
1 ﬂ/ _ e?
r?sin? 8 d¢? 4Ameor

This was obtained by calculating |32 in spherical polar coordinates in Appendix 1.
The solution to the Schrﬁdinger equation for the ground state is:

2

—me
Y = constx e x| i
Ameoh
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In general, the solutions are of the form:

¢"'€’"w = RnL (I') ('Dx/m«.(e)@mw (¢)

where R,,L(r) is a function only of r, ®4, m, (19) 5@ function only of 0, and q)'"w(‘p)
is a function only of ¢. The energies depend only on the principal quantum
number n and are given by E,‘ =-R hc/nz.

ANGULAR MOMENTUM

The orbital angular momentum operator L=rx P can be calculated in terms
of spherical polar coordincites when the momentum operator is known in terms of

those coordinates. The z component of orbital angular momentum is:

ot
ide

ond the wavefunctions,
im,
P (0} ="

with m, = —,{ geee 0,00, ,{ - ],'{,, are eigenfunctions of [, with eigenvalues
mwﬁ. The total angular momentum operator is given by:

L2‘// - _Tﬁ__ “- aa_kti h2 82¢

sn 090\ 38)  snifagl

and the wavefunctions @4,,,‘;(6)@,““
eigenvalues ﬁ2£(& + 1), where £ =01, 2,.. .n —1. Thus the stationary

(<p) are eigenfunctions of 1_2 with the possible

states of the hydrogen atom, corresponding to the wovefunctions \ﬁ,.(,,,‘ Jr, 8, <p),
are described by three quantum numbers. The principal quantum number n de-
termines the energy. The orbital angular momenturn number 'f, is a positive

integer <n= 1, and the azimuthal quantum number m, is an integer such that:
-4 <m, < +4
NORMAL ZEEMAN EFFECT
An electron of orbital angular momentum L has a magnetic dipole moment:
Hm= _il'

2m

and interacts with an external magnetic field B along the z axis with the energies:

eB eB
E = —ﬂm'B = %L, = 2-,;m¢h = mvﬂB
where the Bohr magneton 3 is
h
B=s 0027 x 1072 j/w/m?

" 2m



Problems

This additional energy causes a 1;p|i1‘|’ing of a level corresponding to some volue

of Aﬂ into 2 ,f, + 1 levels, and transitions between levels occur restricted by the
selection rules A £, = +1, Am, = =1,0. In the normal Zeeman effect, only

orbital angular rnomentum is important, and spectral lines are split into three

components.

ELECTRON SPIN

Electrons possess internal angular momentum, or spin, S, choracterized by a
quantum numbers = Y2 such that:

S%Y - Ris(se 1)¢=%n2¢

The intrinsic magnetic moment of the electron is given by:

e
K = —_S
m
The total angular momentum of an electron is then J = L+ §, and the electron
states are described by quantum numbers | and m,, where | is half an odd

integer. The eigenvalues of total angular momentum are:
W= A+ W

The z component of total angular momentum has the eigenvalues:

Ly H fim ), OH@ L% | %’i,

RIGID ROTATOR

A diafomic molecule has roquionc|| energy levels given by:

2
£ - ﬁ_J(J;’JL_ﬂ 1=012,. ..

where [ is the moment of inertia of the molecule about the center of mass.

problems

1. Estimate the ratio of the gravitational attraction at a given distance between the
electron and proton in hydrogen, to the Coulomb attraction.
Answer: 4meoGmM/el == 4 x 1074,

2. The energy of the electron in the hydrogen atom is p2/2m 82/47r€or‘ As-
sume this is @ one dimensional problem with ApAr > A, and find the radius r cor-
responding to the minimum possible energy, by teking p2 ~ (Ap)2 ~ (ﬁ/Ar)2

.

249



250

Hydrogen atom and angu/or momentum

10.

11.

12.

13.

r o~ Ar, and minimizing the resulting expression for energy. Compare with the first
Bohr radius.

Answer: AWgo‘ﬁz/mez =5.28 x 107" meters.

Show that the wavefunction {499 of Table 8.2 is a solution of the Schrédinger
equation for the hydrogen atom, and find the corresponding energy.

Answer: Ej;

Calculate the shortest and longest possible wovelengths of lines in the Balmer series
of hydrogen.

Answer: 3647 Angstroms, 6563  Angstroms.

Doubly ianized lithium has three protons in its nucleus and a spectrum very similar
to that of hydrogen. Calculate the energy of the lowest state in eV, and the wave-
length of the spectral line arising from an n = 2 to n = 1 transition in this ion.
Answer: E = =122.7 eV; A = 135 Angstroms.

Calculate the reduced mass of five times ionized carbon,: the mass of the neutral
carbon atom is 12.000 amu = 19.929 Xx 10"27kg. Calculate the effective Rydberg
constant for this system. ‘The experimentally observed valve is 10,973,228.6 m~ .
Verify the corectness of +he expression for the x component of the angular momentum
operator in Equation (8.22).

Verify that the functions in Equation (8.23) are eigenfunctions of Lx with the indicated
eigenvalues.

Find the wavelength of a photon emitted when the ‘electron in a hydrogen atom
makes a transition from then = 3 state to the p = 1 state.

Answer: 1026  Angstroms.

A photon is given off by hydrogen in the trahsition n =z 3 to n = 1. The work func-
tion for siver is 4.73 V. What is the maximum kinetic energy an electron can have
if knocked out of silver by this photon?

Answer: 7.36 eV.

For two particles of mosses m and M and positions r; and ry, the Schrédinger
equation is:

h? <<92 2 a2> W [a* 8 d?
slsetiatiE] TtttV VY = EY
2m \dx3 dy3 dz; 2M \dx3 dy; d0z3

let r = rp, = ry and r, = {mry + Mr, )/(M + m), the center of mass position
vector. If k is a constant vector and V depends only an the relative vector r, show

. ) ik
that a solution for  is of the form ) = f(ne" . where f() satisfies the equation:

L 2%?
——-—2+—2+—2f+W=E-Li
2u \ox dy dz 2M+ m)

with the reduced mass, u = mM/(M + m). What is the physical interpretation of
this form?

The positron is a particle identical in mass, m, to the electron with charge equal and
opposite to that of an eectron. The electron and posil’ron can form a hydrogen-like
combination called positronium. Using the result in the previous problem, find an
expression for the energy levels of positronium.

Answer: E = —Y me/(dmeg)?hin?

The electric field an electron in a hydrogen atom sees is er/47rcor3. Using B =

2 . .
—v x E/¢® and the fact that the magnetic moment of an electron is H,= —e/ms,
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show that the spin-orbit coupling energy is (e2/47r60m2c2)5'l/r3. (Actually, this is
a factor of 2 too large, due to relativistic effects associated with the rotating rest
frame of the electron). Using the orders of magnitude: S ~ #, L ~ii, r ~ Bohr
radius, show that the spin-orbit splitting is comparable to the hydrogen atom
energy times a2, where @ = e2/47r60'ﬁc =~ 1/137 is the fine structure constant.
Since the hydrogen atom energy is on the order of -- 10 eV, what is the order of
magnitude of the spin-orbit or fine-structure spliting?

Answer: 1Q° Sev.

14. The relativistic kinetic energy is T = \/,_;3 + mzoc‘— mcc2. Far pc << mc2 this

15.

is T~ (% p2/m)(l -l p2/m2c2). The first term is of the order of the hydrogen

atom energy when it is used for the kinetic energy part of the hydrogen atom
Schrodinger equation. Use this ta show that the next term is of order a2 times the
hydrogen atom energy, where « = 92/47r€0'ﬁc o~ ]/] 47 18 the fine structure constant.
From the results in the previous problem, thirs also the order of magnitude of the
spin-orbit coupling energy.

Write the Schrodinger equation for a free particle in spherical coordinates. Show

that two solutions are:

Yo = _[sin (kr)]
kr

4 = g@ sin (kr) o0s 0

ke (kr)?

where k is a constant. What is the energy in terms of k?

16. For a particle in a spherical box of radius ro, what are the conditions on the k’s in

17.

18.

¥ and y, of the previous problem? Which of the two solutions could give the wave-

function for a hemispherical box?

Answer: sin (kry) = 0 or k = g for
0

tan (krg) = kro for Yy; ¥
The operator, Lj?;s given in Equation (8.24). Assume that there exist eigenfunctions

of the form  =: Z a, cos” f. substitute into the equation L2y = AyY. By using the
n

condition that the coefficient of a given power of cos f) on the left side of this equa-
tion must equal that on the right, find a relationship between a,,, and a, Determine
the values of A such that the series is actualy a polynomial, i.e. that a, = 0 for
some n. Assume that ag =1 and a;=0, or ag =0 and a; = 1

Answer: A:ﬁz{(fﬁ-#l) with £=1,2,3,....

Verify that the following are eigenfunctions of the operator, Lz:

Yo = 1 ¢y = cosl; ¢, = 3 cos? § = l; Ys = Zcos § - 3 cos f
2 2 2

The volume element in spherical coordinates is: rzdr sin § dfd®. Find what constant

each wavefunction l,b{ must be multiplied by to make:

2% x
f d¢ f ¢E sinfldf = 1
0 0
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19.

20.

21.

22.

23.

24.

25.

26.

27.

28

Verify that the angular functions in Yqy; . Yan) . Y327 Of Table 8.2 are eigenfunctions
of 12,

An angular momentum eigenfunction for the rigio\ rotator is given by sin f§ x
5 cos? f ])e"p. What are the eignvolues of 1% and L?

Answer: 125%h.

The three { = 0 waveiunctions for the hydrogen atom in Table 8.2 are:

NI —
Q1=

2
Yoo = const. x e . Yoo = const. x e ey —

);

The volume element in spherical coordinates is rdr sin § df de. Find by what

o 2
- 2r 4T
Yan = const. X e U1~ .+ __.>

constant each wavefunction must be multiplied so that:

AT / ]‘//,. 22 = 1
9

Find the expectation value of r for the ground state, k&loo = const. x e’ with

Y = me2/47reoﬁ2, of the hydrogen atom. Compare with the Bohr radius, a =

0.53 X 'IO‘]0 meters.

Answer:  (r) = 3_ = g)a
(27) 2

Find the expectation value of the potential energy, —ez/(47r€0r), ond the kinetic

energy,

Ry, 2a Vet s,

a
" 2m ar? roor 2 69_2‘— ;2 sin § 30 r2sin? 6@2

for the state, Y90 = ‘const)e ' with Yy = mez/47rcoﬁ2. Compare the two results.
Answer: (V) = —XT) = —27.2eV.

Calculate the frequency shifts in sec_] for a line exhibiting the normal Zeemon effect
when the applied magnetic field is 1.72 w/mz_

Answer: 2.4 x 10‘2/sec.

Calculate the maximum component of the spin magnetic moment of the electron
along the direction of an applied magnetic field.

Answer:  0.927 x 1072 joule/(weber/m?).

Show that for wavefunctions that are eigenfunctions of Jz, Lz, 52, and J, where

J=L+S§,

QO = 20+ ) Lt D) = s+ T

Suppose two particles of orbital ongular momentum quantum numbers £ , = 2 and
1 2 = 3 combine to form a single system. Then the tolal angular momentum quantum
number can hove the valves | = 5, 4, 3, 2, or 1 with a maximum and a minimum
vqlue, just as if we added two vectors vectorially of lengths 2 and 3. Show that the
total number of possible states when the particles are specified by the combination
of ¢, m,, and L2, m,, is the same as when specified by j and m;.

The experimentally observed frequency spacing between two successive rotational
lines observed in the spectrum of the HCI molecule is &.3502 x ]0” sec_]. Using
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this information, calculate the distance between the hydrogen atom and the chlorine
atom which make up the diatomic molecule.
Answer: 1.803 Angstroms.
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Pauli exclusion

orinciple and the
neriodic table

We have seen how the hydrogen atom, and hydrogen-like atoms, may be pic-
tured as very small, positively charged nuclei surrounded by “clouds” of negative
electricity due to the eleztron. In fact, a similar picture is valid for more compli-
cated atoms containing many electrons. In the hydrogen atom the charge cloud
is around an Angstrom in diameter and the energy differences involved when
the electron changes its state are a few electron volts. Similarly, in many-electron
atoms, from experimental studies of spectra, chemical reactions, formation of
crystals, etc., it can be ccncluded that the charge clouds are of the order of a few
Angstroms in size, and that energy changes are also of the order of a few elec-
tron volts. For example, when a sodium atom and a chlorine atom combine to
form NOC|, the total energy given up per molecule formed is 4.24 eV and the
NaCl distance is 2.36 Angstroms.

When two atoms are i:)rought close together, the electronic charge clouds will
begin to overlap, and ii is to be expected that the features of the interaction
between atoms wil be largely determined by the structure of the electronic cloud,
or in other words, by the states of the electrons in the atoms. Some atoms tend to
give up an electron and form positive ions, such as the alkali metals sodium,
potassium, rubidium, cesium, Some atoms tend to attract an extra electron and
form negative ions, such as the halogens, fluorine and iodine. Others are chem-
ically nearly inert, such as helium and neon. Because of the great variety of
chemical behavior we would not expect the electronic states of all atoms to be
similar, but important differences must exist among them.

In studying the mathematical solution of the hydrogen atom problem by
means of Schrddinger’s equation, it has been seen how the various states of the
electron can be labeled by a set of quantum numbers. The spectrum of light
emitted by hydrogen can then be understood by saying that the electron makes
a transition from one state to another, emitting a photon in order to conserve
energy. Although in more complicated atoms the energy levels do not have the
same numerical values s in hydrogen, still the state’s may be |gbeled by the

same set, or a very similar set, of quantum numbers as are used for hydrogen.
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In addition 10 the fact that other nuclei have larger charges than does the proton
in hydrogen, the complications due to electron-electron interactions shift the
energy levels around somewhat.

From a study of the spectrum of an atom, it is possible to determine the various
energy levels and their quantum rumbers. It is observed experimentally that in
the spectra of atoms having two or more electrons, certain lines are missing. For
example, in lithium there are no transitions from n = 2 states to n = 1 states.
In explaining these and related phenomena, Pauli proposed the exclusion princi-
ple. Loosely stated, this principle says that no two electrons in an atom can exist
in the same quantum state. This remarkably simple principle can also be used to
explain the structure of the periodic table of the elements and the chemical be-
havior of the atoms of each elemert. Let us begin by reviewing the nomenclature

used in describing atomic energy levels.
"1 DESIGNATION OF ATOMIC STATES

In solving the Schrédinger equation for the isolated hydrogen atom, it was found
that the wavefunctions were labeled by the quantum numbers: n, 4, and m,,
and spin quantum numbers. The energies were degenerate and depended only
on the principal quantum number, n. While in the previous chapter my with sub-
script  was used to avoid confusion with the symbol m for mass, no such confusion
should occur in this chapter. Therefore, we will from here on use m for the azi-
muthal quantum number, as is usual in physics. The second quantum number ,{ is
called the orbital angular momentum quantum number. It can have the possible
values /ﬁ =0,1,2,....(n =1). Thus for a given value of n, there are n values
of 'f, If a state is described by a value { for the orbital angular momentum
quantum number, then the square of the orbital angular momentum is L2 =
AL+ 1).

The various { states are also denoted by letters. States for which »f, =0 ore
also referredl to as s states; { = ‘| are p states. In various applications, these
letters may be either capital or small. The designation is given in Table 9.1.

TABLE 9.1 Alphabetic designations of states for different
orbital angular momentum quantum numbers 4.

4 value alphabetical designation
0 $
! P
2 d
3 f
4 9

The rest in alphabetical order.

An X, = 5 state would be an h state. All s states have zero orbital angular
momentum, and the wavefunctions depend only on r. So the probability den-
sity f ¢nw ‘ 2 has spherical symmetry. If n = 3, the states §, p, d are possible

corresponding to the &values, 0, 1, 2. states are sornetimes designated by writ-
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ing an integer and then a letter: 3p, 1s, Qp, etc. The integer refers to the value
of n and the letter refers to the value of 't Thus a 44p state has n = 4, {, = 1.
If n = 5, the possible states are Js, 5p, 5d, 5, 5g. In the hydrogen atom, all

these n = 5 states are approximately degenerate and have the same energy.

NUMBER OF STATES IN AN n SHELL

The azimuthal quantum number m can have positive or negative integral values
or zero. Since mB is the Z component of orbital angular momentum, the maximum
magnitude of m is equal to ff, Thus, m can vary in integral steps from a minimum
value of =— {to @ maximum value of »ﬁ This gives 21, + 1 values of m for a
given '{ Thus, for example, for a 5p state there are three possible m values, and
for a 3d state there are five. If there are 2& + 1 values of m for a given {, and
n values of »ﬂ( 'f, =0,1,...n =1) for a given n, then for a given n the total
number N, of states of the electron in a hydrogen atom is equal to:

n-1

N, = 24 + 1) 9.1
=0

The arithmetic series formula gives us:

= _n(n =1
;o 4= (9.2)

so the number N, in terms of n is N, = 2[n(n ])/2] +n = nz. This means
that in hydrogen the energy degeneracy is n2. These n2 states are different be-
cause the dependence of lﬁ,, gm ON (r, 0, (I>) changes as /E and m change, i.e. as
the angular momentum changes.

The specification of electronic states in terms of h, { and m is not quite com-
plete, because in addition to these quantum numbers the electron has internal
quantum numbers, i.e. spin angular momentum numbers, with values § = V2
and mg = +% . The number § is the total spin angular momentum quantum
number; and the z component of spin angular momentum has eigenvalues of
msh. Thus, including the effect of spin, to completely specify the state of an elec-
tron we need five quantum numbers, n, {, m, s, m,. However, for an electron, s
is always equal to Y2 so if we keep this fact in mind, we only need to use the
four quantum numbers n, {, m and m,. Since for a given n, »ﬂ and m, there are
two possible values of m,, the degeneracy of the electron in the hydrogen atom
is actually not n2, but 2:12_ Also, in addition to the spatial coordinate r describ-
ing position of an electron, there is another coordinate describing spin, so in
general an electronic wavefunction will be a function of the form l,b,,,g,,,,,,s(r, S)

where S is a spin coordinate.

9.3 INDISTINGUISHABILITY OF PARTICLES

The above considerations are valid when we have one electron in a state in a

hydrogen-like atom. If we have a many-electron atom, then the energy levels will
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in general be shifted, so that they may depend on Aﬁ as well as n. This is because
the outer electron wavefunctions penetrate the cloud of inner electrons to differ-
ent extents depending on {, leading to different ‘average potential energies.
Also, since total angular momentum (I. + S) is quantized, it may be more useful
in some cases to label states by total angular momentum quantum numbers [, m,,
rather than 'f, and m. We shall not need to do this here, however.

Consider {Ih atom, such as helium, which has two electrons. The wavefunction
\L will then depend on two sets of variables: ry, S, for one electron and rq, 52 for
the other. So the wavefunction could be written l//(h, S]; ra, S;), where the
labels before the semicolon refer 1o the values of the coordinates of electron 1
and the labels after the semicolon refer to values of the coordinates of electron 2.
Suppose the coordinates of the electrons are interchanged; that is, the electron 2
is given coordinates ry, S1, and electron 1 is given coordinates ra, 52, The result-
ing wavefunction will be ¢(r2, Sz; r, S‘)_ It is of importance to consider this hy-
pothetical “exchange” of electrons, because it has been found that electrons are
indistinguishable from each other. In classical mechanics it was assumed that all
particles-even identical particles--could be given labels to distinguish one from
another. In quantum mechanical systems of identical ‘parﬁclesl this is not possible.
If

dPlZ = \[/(I’], S]; I';,S;) ' 2dV1dV; (9.3)

is the probability of finding electron 1 in dV1= d.x]dyldz] and electron 2 in
dV2 = dx;dy2d22, then since the particles are indistinguishable, this must
be the same as the probabilty of finding electron 2 in dV; and electron 1 in dVy;
which electron we call 1 and which we call 2 should make no difference. But the

probability of finding electron 2 in dV, and electron 1 in dV, s
. 2
dpz] = \Z/(I;, SZ; T, S]) dV;dV1. (9.4)

Indistinguishability of particles requires that the two probabilities in Equa-
tions (9.3)and (9.4) be equal. Thus, ¥(r, S1;r2, 5,) de1dV2: Yir2, Sq;
AW S]) ‘ de;de1 , OrF:

|¢(|'1,S1;"2,S:')t2 = ]\b(hlsz;l'\,S})lz (9.5)

When the magnitudes of two numbers are equal, the numbers themselves must

be equal, except possibly for a phase factor, e.‘@ since em l = 1. Thus, the

*

most genercﬂ conclusion which can be drawn from equation (9.5) is that:

Y(ra,S2:n,8:) = eiq)\ﬁ(r],suhlsz) {9.6)

where eiq) 's some unknown phase factor.

The phase factor P i actually a constant, independent of coordinates. While a
completely rigorous demonstration of this fact is rather difficult, the constancy of
$ can be seen to be quite reasonable, by consideringl the expectation value of a
quantity such as the x component of momentum; this involves an integral of the
form:

h 0
<px> = f‘w‘,l/*(l‘n Si;irg, S2) l:' 5(: + '—: aix; \L(l’], S]; |'2,Sz)dv1dv2 (97)

257
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which must remain unchanged if the particles ore interchanged:

(B 9 .
<P,> = be*(rz,Sz:r],S])e“‘b <—I 8(7] + h 9.

i 0x,

e Y(ry, Szi v, S1)dVadV,  (9.8)

—i

Hence the operator e )e*@ must be equivalent to the operator
x

[
(P +
P *op P2 o
P, + P2, . More generally, for any differential operator Oop representing a
op op

physical quantity,
—id i®
e Oope = Oop (9.9)

which can be true for all differential operators only if $ is a constant.
After exchanging two particles, the new wavefunction is equal to the old, mul-
tiplied by e”. If we carry out a second exchange of the same two particles, the

some thing wil happen, $¢ in addition to Equation (9.6), we hove:

i®
Y(r,S1:r2,8;:) = e Y¥(ry, 21, Sy) (9.10)
Substituting Equation (9.10) into Equation (9.6), we conclude that ¥{ry, S,;
r, Si)= ez'q)\b(rz, Sy: N1, 8)), and therefore e¥® =11t e¥ = 1, then there

are two possibilities for the phase factor eiq). They are e“b = 41 or -1. Thus

we have two possibilities upon exchanging identical particles:
Ylrz, S2;11,80) = (£ 1)Y(r,51;12, S2) (9.11)

Exchanging two particle!; has the effect of either leoving the wavefunction un-
changed or changing it into its negative. Wavefunctions which hove the property
Y(r2, S, 1y Sv) = +¥(n, Sy; r2, S;) ore said to be symmetic under particle
exchange. When ¥(rz, Sy; 1, Si)= —¥(r1, S;; r2, $;) so that the minus sign
applies, the wovefunctions ore said to be anfisymrnefric under exchange. Both
of these possibilities ore found in nature. Experimentally, the +1 arises when
dealing with identical particles of integral spin, called bOSOﬂS. The minus sign
arises when exchanging particles of half-integral spin, called fermions. Since an
electron has spin Y2 and it is a fermion, upon interchanging two electrons the

wovefunction will be mul-iplied by — 1,

9.4 PAULI EXCLUSION PRINCIPLE

Suppose we ask whether two electrons con hove equal r and S, that is, con we
have ry, Sl =Ty, S; = r, S? Since the wovefunctions describing electrons ore
antisymmetric, we start with a wavefunction ¢/(r, S; r, S), then after exchanging
two electrons, we find y[/(r, S; r, §) = —t,b(r, S; r, S). it follows that the probabil-
ity of finding two electrons at the same place with the same spin must be zero.
Suppose we assumed that two electrons con each be described by quantum
numbers n'ﬂmms, with ‘E ymimyg, for electron 1 and n2'€2m2m52 for electron 2;

and suppose we tried to write an overall wavefunction as a product of single-
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particle hydrogen-like wavefunctions:
V(. $1ir2,82) = Yo pimym,, (11, $1)¥nytomym,, (F2, S2) (9.12)

We would find that this simple product function is not antisymmetric, and hence
does not sqfis‘fy the condition of indistinguishability of particles, Equation (9.5).
We can, however, construct a wavefunction describing a state of the same energy

by taking a linear combination:

l//(l' S; |rZS2 \/__[‘l/n]{m‘m rl; S, )B[/ngl;;mw,g(fz: S2)

__lpn]&]rn]ms] (r21 S2)¢nz£2m2mj2(r‘ ’ S] )] (9~]3")

Upon interchange of the coordinates ry, S, and r;, S,, the above function is
easily seen to be antisymmetric.

So a linear combination of single-particle product wavefunctions with oppositle
signs for the two terms gives us a correctly “antisymmetrized” overall wavefunc-
tion. The factor 1/\/5 is for correct normalization. The first term could be inter-
preted by saying that electron 1 is in state n, /ﬁ\m M, and electron 2 is in
state N2 'ﬂzmymsz, while the seconcl term could be interpreted by saying that
electron 2 is in state »C 1My Mgy ancl electron 1 is in state n, ,{,QQO,g. Thus,
because of the indistinguishability of electrons and the related fact that the wqve-
function must be antisymmetric, the two electrons are both partially in the states
m{]m]m“and nj; fﬁ;mzmsz‘ Suppose that both states were identical, however:
ny = Ny, '{/1 = '{2, m;= mz; and Mg = M. Then, from an inspection of the
antisymmetric wavefunction in Equation (9.13), it is immediately seen that ¢ = 0
-an impossibility.

Although we have been discussing the situation for electrons in an atom, a
similar situation holds no matter what system is being considered. Thus, for two
electrons in a one dimensional box, the individual single-particle wavefunctions
are described by values of k, = n@/L, and apart from spin the wavefunctions
are Y,(x) = \/2/Lsin {nm/L)x. with spin, the wavefunctions would be denoted

by ¢,,m (x, S). Then, if two noninteracting particles were in the box with wQve-
functmns ¢n]m 1 and ¢"2m ,, one could write the antisymmetric wavefunction as:

Y(x181;: %,8;)= [lr,/n]msl (x1, Sl)\[/n2m§2(x2:s2)

2

V2
= Yo (X2, 92)Waym,, (X1, 1) (9.14)

Then in this cgse also, if the two states are the same: M = Ng, M= Mz, WE

find:

Y(xi, $15%2,82) = 0 (9.15)

Thus, it is impossible for the two electrons to be in the same single-particle state.
This leads to the statement of the Pauli exclusion principle for states in which the

electron wave function is approximately an antisymmetric linear combination oiF
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products of single-particle wavefunctions. No two electrons in an atom can exist
in the same quantum state. In other words, if the wavefunction is to be non-
vanishing, the two electrons must be in different quantum states. This means that
in an atom at least one of the quantum numbers n, »f,, m, m for the two electrons

must be different.

EXCLUSION PRINCIPLE AND ATOMIC ELECTRON STATES

The above discussion of the exclusion principle applies to any two electrons in a
system no matter how many there are, except that when there are more than two
electrons, the overall wavefunction depends on more variables. In an atom,
where the four quantum numbers, n, {, m, m, are used to describe the electron
states, then every single-particle wave function will have a set n'{;mms which is
different from that of every other single-particle wave function. Since there is a
tendency for isolated systems in nature to seek the lowest possible energy state,
we would expect that the electrons in an atom would arrange themselves so that
the overall atomic energy will be a minimum. Thus, in a hydrogen atom, for
example, the single electron would ordinarily be found in a state of n = 1. This
is the case unless the atom is put in contact with matter, such as in a gas dis-
charge, where the electron can be excited to higher states. We shall discuss here
only atoms as normally found in nature-in their ground state, or state of lowest
energy.

For hydrogen, since the ground state (also called normal state) is a state of
N = 1, the orbital angular momentum quantum number { and the magnetic
quantum number m must both equal zero. However, to a very good approxima-
tion, the energy does not depend on the spin, which means that the energy does
not depend on the quantum number m, The quantum number m, has the possible
values =% ; so in hydrogen there are ocfua”y two possible states of lowest en-
ergy, labeled by n =1, £ =0 m=0m,=+%andn=14=0m=0
m, = = Y2 . we shall represent states of m, = + Vo by an arrow pointing up: f s
and m; = — ] by an <rrow pointing down: y . The ground state of hydrogen
could be represented in an energy level diagram, Figure 9.1, in two ways ¢orre-

=0 2= =0 =1

or

n=1 o N=] ——  —

t

Figure 9.1. Diagram inclicating the lower levels of the electron in a hydrogen atom.
Presence of on grrow up ¢r an arrow down, represents on electron occupying that state
with my= +%or my= - , respectively.

sponding to the two spin orientations. In these diagrams, the presence of the
arrow indicates which level the electron occupies.

Now consider helium, which has two electrons. If we assume that the hydrogen
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quantum numbers can be used approximately, the state of lowest energy would
be that state for which both electrons had n = 1. Then tf, =0, m= 0; and to
satisfy the exclusion principle, if one electron has m, = + % (spin up), the other
electron must have m; = - % (:;pin down). This state is illustrated in the energy

level diagram of Figure 9.2. Having two electrons in the n = 1 state, with spin

2=0

NRP
o

Figure 9.2. lllustration at helium ground state.

up and spin down, completely exhausts all the possibilities for different sets of
quantum numbers with n = 1. We then say that the n = 1 shell is filled, or
closed.

In lithium, which has three electrons, the lowest energy state is one in which
the n = 1 shell is filled and the third electron goes into a state of next lowest
energy, which is an n = 2 state. Since helum has two electrons in a closed n = 1
shell, and lithium has one more electron outside a closed shell, we would expect
the chemical properties of lithium 10 be quite different from those of helium.
Because the n = 2 electron is less tightly bound than n = 1 electrons, it takes
less energy to remove the n = 2 electron than the n = 1 electron. So it should
be relatively easy to add enough energy to the Li atom to remove the electron in
the n = 2 state. The remaining atom would then be an ion with a net positive
charge. In chemistry, it is known that Li forms positive ions and tends to give up
one electron in chemical reactions; it has a valence of + 1. After one electron is
removed from Li, the ground state of the remaining ion has two electrons in the
n = 1 state. This is similar to helium. Since the n = 1 electrons are very tightly
bound, it should be much more dim(ZUH to remove an electron in He, and in fact
helium is one of the gases which are known as inert gases, Likewise, it is difficult
to remove another electron from the Li ion. The possible energy level diagrams

for lithium, which has three electrons, are shown in Figure 9.3, with the third

£=0 £=0

|
|

Figure 9.3. Lithium ground state.
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electron in a 2s state. It Joes not matter whether the third electron is drawn | or
. since here we are neglecting magnetic interactions. In such an approximation,
2s states with spin up or spin down are degenerate.

In the next most complicated atom, beryllium, there are four electrons. The
2p levels lie slightly above the 2s levels, so the ground state has two electrons in
1s states, two in 2s states, and none in 2p states. The energy level diagram for

berylium in the ground state is shown in Figure 9.4.

s states p states

=0 =1

Figure 9.4. Berylium ground state.

9.6 ELECTRON CONFIGURATIONS

The electronic configuration of atoms in their ground state is sometimes indicated
symbolically as follows: hydrogen: ls; helium: ]sz;lithium: 1522s;beryllium:
152252. Thus a sequence of symbols of the form n‘CN is written, where the first
symbol n is an integer clenoting the value of the principal quantum number, the
second symbol { is a letter representing the value of orbital angular momentum
qgquantum number 'f,, ard the third symbol is a superscript equal to the number
of electrons in the n{ state. Thus, in beryllium, ];;2 means that in the 15 state
there are two electrons. The symbol 252 means that there are two electrons in the
n = 2, '£= 0 state.

The next element is boron, with five electrons. In the ground state of this atom,
there will be two electrons in the ]s states, two in the 2s states, and one left over
which has to go into the next higher energy state, which is a 2p state. Thus, the
ground state of the entire atom would be represented by ]$22$22p]. The state
2p is a state of orbital cmgular momentum quantum number "C = 1, so the mag-
netic quantum number m can have the three values 41 or 0. For each of these
values of m, there are two different possible m; values. So the total number of
different 2p states is six. An atom in which the 2p state is completely filed would
be represented by the symbols: 1522522p6. This would be an atom having a total

of ten electrons. For an atom with 10 electrons, the n = 2 shell is completely
closed, and closed shels tend to be exceptionally stable configurations in nature.
Just as the atom with n = 1 shell closed (helium) is an inert gas, so the atom with
the n = 2 shell closed (neon) is chemically inert.

. - . . ] 24 .2 ]
The atom with nine electrons, flourine, has the configuration 1s5°2s 2p5, with

only five electrons in the 2p subshell. If one electron were added to a flourine
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atom, the result would be an ion with a negative churge, and the extra electron
could go into the 2p state to form a closed shel. So flourine in chemical reactions
should accept one electron and have ( valence of =— 1.

The atom with 11 electrons, sodium, is chemically very similar to lithium; it has
a valence of +1and gives up 0Ona electron in chemical reactions. According to
the exclusion principle, the first 10 of these 11 electrons go into the lowest energy
states with two in the ls, two in the 2s and six in the 2p level. The eleventh elec-
tron goes into the 3s level; so the electronic configuration of sodium could be

. 2 . . .
written as 1s22s 2p63s]. In the energy level diagram of Figure 9.5 the sodium

s o

S .
o

Figure 9.5. Sodium atom in its lowest state.

atom in its lowest state is represented. Sodium has one extra electron outside a
closed n = 3 shell. Since closed shells tend to form exceptionally stable con-

figurations, one would expect sodium to form positive ions.

.7 INERT GASES

The next level after the 3s level which fills up with electrons as we go higher in the
periodic table is the 3p level. It takes six electrons to fill the 3p level by itself,
and two electrons to fill the 3s level. So for an atom with the configuration
1522522p63$23p6, there are eighteen electrons. The element argon has 18 elec-
trons, and is an inert gas. So in this case, an inert gas is formed when the 3p
subshell is filled, before any of the ten 3d states is filed. It is found experimentally
that every time a p level is completely filed up, an inert gas is formed. The reason
this occurs is that the nd levels lie so much higher in energy in many-electron
atoms. In general, because of the (complicated electron-electron repulsive forces,

the positions of the energy levels are very difficult to calculate, but their sequence
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can be determined from experiment. Using the fact that higher closed p levels
give rise to inert gases, and the experimental fact that the general order in which
the electron subshells are filed up is given in Table ‘9.2, we can predict the num-

bers of electrons in the inert gases:

Helium 2 electrons (1s7)

Neon 10 electrons (1522522p6)

Argon 18 electrons (1522522’963523’96)

Krypton 36 electrons ('I522512p63sz3p64523dw4p°)

Xenon 54 electrons ('Isz2522p°3523p°4513d'°4p°5524d105p°]

Radon 86 electrons ('I512522p°3523p°4523d'°4p65524d'°5p°
6s24f'5d"06p®)

In a closed 1s shell, there are two electrons whose spins point in opposite direc-
tions. The total angular momentum (L + S) of this closed shell is equal to zero.
Also, the contribution to the total magnetic moment of the electrons in a closed
1s shell will be zero. Similarly, in any closed subshell of the type we have been
considering, the total number of electrons is even and there are just as many
electrons with spin up as with spin down; so the contribution to total intrinsic
magnetic moment from electrons in any closed 5u|:)5he|| should be zero. Also,
since all positve and negative m states are filed for eQ(:h '{ occurring, the orbital
magnetic moments cancel. So the electronic magnetic moments of all the intert

gases should be zero.

TABLE 9.2

1s . &
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This diagram provides an easy way of remembering the
order in which the levels fill. The resulting order is:

15, 25, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, bs, 41, 5d, bp, 7s, 6d
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9.9 Alkali metals
HALOGENS

Let us next consider the group of elements which need one more electron in order
to fil up a p subshell; these have one fewer electron than the inert gases. Since
the inert gases have 10, 18, 36, 54 and 86 electrons, the elements with one fewer
electron are those with 9, 17, 35, 53 and 85 electrons. These elements are called
halogens. They are fluorine, chlorine, bromine, iodine and astatine. Hydrogen,
which has one less electron than helium, is also sometimes classed as a halogen.
Since the halogens, in order to complete their subshells, need one electron, they
tend to form ions of negative charge and have a valence of = 1 in chemical

reactions.

ALKALI METALS

Consider those elements which have one extra electron, outside ( closed p sub-
shell. These elements are called alkali metals. Hydrogen, which just has one elec-
tron, is also usually classed Q$ on «alkoli. Apart from hydrogen, the alkalis have
the following numbers of electrons: 3, 11, 19, 37, 55, 87. The corresponding
names of the alkali metals are: lithium, sodium, potassium, rubidium, cesium
and francium. These elements tend to have valence + 1 since the extra electron
outside the closed subshell has a relatively low binding energy and is easily
removed. Also, the electrons in lower subshells tend to screen out the nuclear
charge, so that the spectra of the alkali metals are very similar to that of hydro-
gen. Figures 9.6 and 9.7 are the energy level diagrams for outermost electrons

of lithium and sodium, which illustrate their similarity 0 that of hydrogen.

vvlrvrrllu|||lrv'urvlvuvlu'“rrulvuullwvvl TYTT

vn‘v

Figure 9.6. Energy levels of lithium Figure 9.7. Energy levels of sodium.
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9.10 PERIODIC TABLE OF ELEMENTS

In Table 9.3 the periodic table of the elements is shown, with elements of similar
chemical properties arranged in columns. The alkali metals are put in the first
column, the inert gases ir the last column; number of electrons (atomic number)
increases to the right. In the second column are the metals berylium, magnesium,
calcium, strontium, barium and radium. These elements have two electrons out-
side a closed p subshell. They should usualy have a valence of +2. The elements
oxygen and sulphur g¢cut in the third column from the right and need two elec-
trons to form a closed shell, leading to a valance of —2. It is seen from Table 9.3
that, starting with scandium, which has an atomic number Z = 21, the ten 3d
states are beginning to fil up, after the 4s states. The corresponding ten elements
are called transition elemenfs; their chemical properties are largely determined
by their two outer 4s electrons, but the inner incomplete 3d subshell gives rise
to some NONZero magnetic moments of the atoms. Thus, many of the transition
elements have interesting magnetic properties. Iron, one of the most magnetizc-
ble of all substances, lies near the middle of the transition group at Z = 26. In
this group, elements 24 (Cr) and 29 (Cu) have only one 4s electron.

In the heavier atoms, particularly in the rare earth group Z = 57 to Z = 70,
the order in which electrons go into the various states is somewhat irregular. The
actual order in which the states are filed up is given in detail in Table 9.4; num-
bers starred there are nolt known precisely. In these elements the outermost elec-
trons are 6s electrons. The chemical behavior of these elements is largely deter-
mined by the outermost electrons, and so all these elements are chemically very
similar.

Since it is total angular momentum rather than orbital or spin angular mo-
mentum which is conserved in atomic systems, the energy states of the electrons
should, strictly speaking, be labeled by values of the total angular momentum
quantum number ’ Since the spin S can be either parallel to L or antiparallel to
L, for a single electron, either | = R+ % o | = 4 - % when & s greater
than zero. For alkali metals in the ground state where »{ = 0, the total angular
momentum quantum number is j= { + %2= Y2 . For the first excited state of
sodium which is a 3P state, there are two possibilities: i: 3/2 or i: %2 . These
states are usually denoted by subscripts: 3P3/2 and 3P1/2. These two states are
separated slightly in energy due to the spin-orbit interaction which was discussed
in the previous chapter. When the spin and orbital angular momenta are parallel
as in the 3P3/; state, the spin-orbit interaction is positive. In the other case, it is
negative; hence the 3P3/2 state lies slightly above the 3P1/2 state in energy. The
3Pis — 3512 and 3Py 35, transitions thus give rise to two closely spaced
yellow lines.

When more than two electrons are present, the rules for adding angular
momenta become quite complicated. The possible values of the total angular
momentum quantum number may be obtained by considering all the possible
ways in which spin Y2 and orbital angular momentum '{, can be added or sub-

tracted from each other to give integral or odd half-integral [ For example, if



TABLE 9.3 Periodic System of the Elements
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TABLE 9.4

Electron Configurations of the Elements

Element

T

Subshell

s [2s 2p

3s

3p

3d

4s

4p 4d 4f

5s

5p 5d 5f
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9.4 (Continued)

9.70 Periodic table

Element

4s 4p 4d

4f

5s

5p

5d

6s

6p 6d| 7s

47.

48.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

Ag
Cd
In
Sn
Sh
Te
|
Xe
cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb

Palladium c¢on-
figuration—
46 electrons
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10*
11~
13
14

71.
72.
73.
74.
75.
76.
77.
78.
